C++ implementation of Monte Carlo Tree Search with Python wrapper

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
2
down vote

favorite
1












Important



Prebuilt Python Extensions built for Python 3.6



Includes Python f-strings (3.6+)



Complementary GitHub link



https://github.com/thejhonnyguy/CPyMCTS



Notable: Previous attempt with stock Python



Stock Monte Carlo Tree Search implementation to a simple connect 5 game in Python (Includes bugs)



C++ is the star of the show today with a custom MCTS implementation for the 5 in a row game. To build the pyd I used boost.python with Python 3.6 amd64 and x86 versions. (3.6.4 amd64, 3.6.5 x86)



C++



main.cpp



#define BOOST_PYTHON_STATIC_LIB
#include <string>
#include "boost/python.hpp"
#include "boost/python/def.hpp"
#include "boost/python/module.hpp"

#include "board.h"
#include "search.h"


BOOST_PYTHON_FUNCTION_OVERLOADS(search_overloads, search, 2, 3);


BOOST_PYTHON_MODULE(cpymcts)

using namespace boost::python;
class_<Board>("Board", init<>())
.def(init<int>())
.def("reset", &Board::reset)
.def("play", &Board::playMove)
.def("undo", &Board::undoMove)
.def("get", &Board::getBoardPos)
.def("check_win", &Board::checkWin)
.add_property("string", &Board::showString)
.add_property("size", &Board::getSize)
.add_property("move_count", &Board::getMoves)
;
def("search", search, search_overloads());



Below: Node class contained within node.h and node.cpp



node.h



#pragma once
#include "board.h"
#include <vector>
#include <string>
#include <memory>

// Node class

class Node

public:
Node *parentNode;
std::vector<std::unique_ptr<Node>> children;
unsigned long visits;
long long score;
unsigned long visit_offset;
int team_multiplier;
int move_to[2];
bool terminal;
int termscore;

// Constructors
// Default. Will assume top node
Node();
// Norm
Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term = 0);

//Methods
void Backtrack();
void CreateChild(unsigned long offset, int mt_r, int mt_c, int term = 0);
void BackPropagateScore(int s);
bool IsLeaf();
double ucb1();
double ucb1(double exploration);
Node* SelectBest(Board * board);
;


node.cpp



#include "node.h"
#include "board.h"
#include <string>
#include <iostream>
#include <limits>


// Node implementations

Node::Node()

// Default constuctor
// Node * parentNode will be left undefined
// It is the duty of the programmer to not do anything foolish
parentNode = nullptr;
visits = 0, score = 0, visit_offset = 0, team_multiplier = 1;


Node::Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term)

// Constructor used when the node is not the top node.
// int term default value 0
parentNode = parent;
move_to[0] = mt_r; move_to[1] = mt_c;
visits = 0, score = 0, visit_offset = offset, team_multiplier = -parent->team_multiplier;
if (term) terminal = true;
termscore = term;


void Node::Backtrack()

std::cout << "yeet" << std::endl;
if (parentNode == nullptr) return;
parentNode->Backtrack();


void Node::CreateChild(unsigned long offset, int mt_r, int mt_c, int term)

// Creates a child and appends it to Node<std::unique_ptr<Node>> children
// Nodes created here use the second constructor,
// and `this` is the parent of its children, hence the `this` argument
children.push_back(std::make_unique<Node>(this, offset, mt_r, mt_c, term));


void Node::BackPropagateScore(int s)

++visits;
score += s;
if (parentNode == nullptr) return;
parentNode->BackPropagateScore(s);


bool Node::IsLeaf()

return !children.size();


double Node::ucb1()

return ucb1(sqrt(2));


double Node::ucb1(double exploration)

if (!visits) return std::numeric_limits<double>::infinity();
double average = (double)score / visits;
return team_multiplier * average + exploration * sqrt(log(parentNode->visits) / visits);


Node* Node::SelectBest(Board * board)

if (parentNode != nullptr) board->playMove(move_to[0], move_to[1]);
// This will only have effect on the top node.
if (IsLeaf()) return this;
double max_value = -1.0;
int max_index = 0;
for (unsigned int i = 0; i < children.size(); i++)

double tmp = children[i]->ucb1();
if (tmp > max_value)

max_value = tmp;
max_index = i;


return children[max_index]->SelectBest(board);



Below: Board class contained within board.h and board.cpp



board.h



#pragma once
#include <vector>
#include <array>


// Class declaration and class method declarations go in the .h file here

class Board

private:
short board[23][23];
int lastPlaced[2];
int size;
int moves;
std::vector<std::array<int, 2>> playedPieces;

public:

Board(); // Default initialization to 19x19 board
Board(int); // Initialization to NxN board

std::string showString();
void print();
void reset();
void playMove(int, int);
void undoMove();
void replayMoves();
void manOverridePlayedPieces(std::vector<std::array<int, 2>> ov);
int checkWin();
int getMoves();
int getSize();
int getBoardPos(int r, int c);

std::vector<std::array<int, 2>> getObvMoves();
;


board.cpp



#include "board.h"
#include <string>
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>


// Board class implementation goes here (the literal functions)

Board::Board()

size = 19;
reset();


Board::Board(const int s)

size = (s < 19) ? s : 19;
reset();


std::string Board::showString()

std::string str;
for (int r = 0; r < size; ++r)

for (int c = 0; c < size; ++c)

str += std::to_string(board[r][c]);
if (board[r][c] != -1) str += " ";

str += "n";

return str;


void Board::print()

for (int r = 0; r < size; ++r)

for (int c = 0; c < size; ++c)

std::cout << board[r][c] << "t";

std::cout << std::endl;



void Board::reset()

// Reset values
moves = 0;

// Reset board
for (int r = 0; r < 23; ++r)

for (int c = 0; c < 23; ++c)

board[r][c] = 0;



playedPieces.clear();



void Board::playMove(int r, int c)

if (!board[r][c])

board[r][c] = (moves % 2) * 2 - 1;

else return;
++moves;

lastPlaced[0] = r;
lastPlaced[1] = c;
std::array<int, 2> lp r,c ;
playedPieces.push_back(lp);


void Board::undoMove()

board[lastPlaced[0]][lastPlaced[1]] = 0;
--moves;
playedPieces.pop_back();
if (playedPieces.size())

lastPlaced[0] = playedPieces[playedPieces.size() - 1][0];
lastPlaced[1] = playedPieces[playedPieces.size() - 1][1];



void Board::replayMoves()

std::cout << "Replaying moves:" << std::endl;
for (unsigned int i = 0; i < playedPieces.size(); ++i)

std::cout << i << ": " << playedPieces[i][0] << ", " << playedPieces[i][1] << std::endl;



void Board::manOverridePlayedPieces(std::vector<std::array<int, 2>> ov)

playedPieces = ov;
moves = playedPieces.size();



int Board::checkWin()

if (!moves) return 0;
// Fast version: Check only the surroundings of the last placed piece
int locR lastPlaced[0] ;
int locC lastPlaced[1] ;

// Check horizontal of the area. Verified to work.
int startC (locC - 4 < 0) ? 0 : locC - 4 ;
int endC (size - locC >= 4) ? locC : size - 4 ; // Maths checks out
for (int sC = startC; sC <= endC; ++sC)

int sum 0 ;
for (int a = 0; a < 5; ++a)

sum += board[locR][sC + a];

if (sum == -5)

return -1;

if (sum == 5)

return 1;



// Check vertical of the area. Seems to work as well...
int startR (locR - 4 < 0) ? 0 : locR - 4 ;
int endR (size - locR >= 4) ? locR : size - 4 ;
for (int sR = startR; sR <= endR; ++sR)

int sum 0 ;
for (int a = 0; a < 5; ++a)

sum += board[sR + a][locC];

if (sum == -5)

return -1;

if (sum == 5)

return 1;



// Check the diagonal (top left to bottom right)
// startR and startC will be used from above code for streamlining
// delta-Row / delta-Col to be used in future
int dRow = locR - startR;
int dCol = locC - startC;
int offset (dRow < dCol) ? dRow : dCol ;
// Too lazy for now to program more to truncate the search if it goes out of the zone
// trust me I'm a programmer and it won't go out of index
for (int sD = -offset; sD <= 0; ++sD)

int sum 0 ;
for (int a = 0; a < 5; ++a)

sum += board[locR + sD + a][locC + sD + a];
//std::cout << "Access: " << locR + sD + a << " " << locC + sD + a << std::endl;

if (sum == -5)

return -1;

if (sum == 5)

return 1;



// Check the / diagonal (bottom left to top right) - holy shit I hope this works
// Calculate the offset to the left of which we start looking
// Reuse `dRow` from last time
offset = dCol; // I put a buffer so it won't go out of range
// Scenario: Top left of board. Program will go too far up. Going too far up is the only concern.
int truncate (dRow < 4) ? dRow - 4 : 0 ;
for (int sD = -offset; sD <= truncate; ++sD)

int sum 0 ;
for (int a = 0; a < 5; ++a)

sum += board[locR - sD - a][locC + sD + a];
//std::cout << "Access: " << (locR + sD + a) << " " << (locC + sD + 4 - a) << std::endl;
//std::cout << board[locR + sD + a][locC + sD + 4 - a] << " log" << std::endl;

if (sum == -5)

return -1;

if (sum == 5)

return 1;



// Draw
return 0;


int Board::getMoves()

return moves;


int Board::getSize()

return size;


int Board::getBoardPos(int r, int c)

return board[r][c];


std::vector<std::array<int, 2>> Board::getObvMoves() //TODO

std::vector<std::array<int, 2>> adjCells;

for (const std::array<int, 2>& piece : playedPieces)

int cpR = piece[0];
int cpC = piece[1];

std::vector<std::array<int, 2>> direcs;
// Above
direcs.push_back( cpR - 1, cpC - 1 );
direcs.push_back( cpR - 1, cpC );
direcs.push_back( cpR - 1, cpC + 1 );
// Beside
direcs.push_back( cpR, cpC - 1 );
direcs.push_back( cpR, cpC + 1 );
// Below
direcs.push_back( cpR + 1, cpC - 1 );
direcs.push_back( cpR + 1, cpC );
direcs.push_back( cpR + 1, cpC + 1 );
for (const std::array<int, 2>& direc : direcs)

if (std::find(adjCells.begin(), adjCells.end(), direc) != adjCells.end()) continue;
if (direc[0] < 0


return adjCells;



Below: The MCTS algorithm used contained within search.h and search.cpp



search.h



#pragma once
#define BOOST_PYTHON_STATIC_LIB
#include "boost/python/tuple.hpp"

#include "board.h"
#include "node.h"


boost::python::tuple search(Board inBoard, int team, unsigned long iterations = 10000);
void viewStats(Node* n, int t);
int simulation(Board board);
int simulation(Board board, bool rebuild);


search.cpp



#define BOOST_PYTHON_STATIC_LIB
#include "boost/python/tuple.hpp"

#include "search.h"
#include "node.h"
#include <iostream>
#include <vector>
#include <algorithm>


boost::python::tuple search(Board inBoard, int team, unsigned long iterations)

std::cout << "Iterations being run: " << iterations << std::endl;
if (!inBoard.getMoves())

std::cout << "Defaulting to middle of board for first move." << std::endl;
return boost::python::make_tuple(inBoard.getSize() / 2, inBoard.getSize() / 2);


Node topNode;
topNode.team_multiplier = -team;

int info_every(std::max(unsigned long(2000), iterations / 5));

/////////////////////////////// M C T S //////////////////////////////////
for (unsigned long iteration = 0; iteration < iterations; ++iteration)

if (0 == iteration % info_every)

std::cout << "Progress %: " << iteration * 100 / iterations << std::endl;
viewStats(&topNode, team);

Board tmp_board inBoard ;
Node* bestLeaf = topNode.SelectBest(&tmp_board);
if (bestLeaf->terminal)

bestLeaf->BackPropagateScore(bestLeaf->termscore);
continue;

if (!bestLeaf->visits)

int score = simulation(tmp_board, false);
bestLeaf->BackPropagateScore(score);
continue;

// Expand
std::vector<std::array<int, 2>> obvMoves = tmp_board.getObvMoves();
if (obvMoves.size() == 0)

bestLeaf->terminal = true;
bestLeaf->termscore = 0; // tie

for (const std::array<int, 2>&move : obvMoves)

tmp_board.playMove(move[0], move[1]);
int termscore = tmp_board.checkWin();
if (termscore) bestLeaf->CreateChild(topNode.visits, move[0], move[1], termscore);
bestLeaf->CreateChild(topNode.visits, move[0], move[1]);
// Undo the move
tmp_board.undoMove();



// Suggest move

int bestmove[2];
unsigned long maxvisits = 0;
for (const std::unique_ptr<Node>& move : topNode.children)

if (move->visits > maxvisits)

maxvisits = move->visits;
bestmove[0] = move->move_to[0];
bestmove[1] = move->move_to[1];


std::cout << "Suggest: " << bestmove[0] << "," << bestmove[1] << std::endl;
std::cout << "Win %: " << team * topNode.score * 100 / topNode.visits << std::endl;

return boost::python::make_tuple(bestmove[0], bestmove[1]);



void viewStats(Node * n, int t)
n->visits == 0) return;
std::cout << "Think: " << bestmove[0] << "," << bestmove[1] << std::endl;
std::cout << "Win %: " << t * n->score * 100 / n->visits << "n" << std::endl;



int simulation(Board board)

return simulation(board, true);


int simulation(Board board, bool rebuild)

if (rebuild)

/* Rebuild the board states to make sure it works properly
Will not guarantee proper working order initially, but
for the purpose of this function, it will suffice
*/
std::vector<std::array<int, 2>> tmp;
for (int r = 0; r < board.getSize(); ++r)

for (int c = 0; c < board.getSize(); ++c)

if (board.getBoardPos(r, c)) tmp.push_back(std::array<int, 2> r, c );


board.manOverridePlayedPieces(tmp);


while (board.getMoves() < pow(board.getSize(), 2))

// Make a random move
std::vector<std::array<int, 2>> choices = board.getObvMoves();
std::array<int, 2> randMove = choices[rand() % choices.size()];
board.playMove(randMove[0], randMove[1]);
if (board.checkWin()) return board.checkWin();

return 0;



Python



Below: the loader and module scripts



loader.py



import sys


if sys.maxsize == 2147483647: # 32 bit python install
from x86.cpymcts import Board, search

else: # 64 bit
from x64.cpymcts import Board, search


Reach.py (fancy naming)



"""
This script is designed to function as a higher level interface
to an end user & programmer. It also handles input checking and such
NO functionality is removed because of this
"""
from typing import Tuple
from loader import Board as Board_, search as search_


class Board:

def __init__(self, size: int = 19) -> None:
if size <= 0:
raise ValueError("Bad value for size.")
if size > 19:
raise ValueError("Size may not be larger than 19.")
self.board = Board_(size)

# Read only properties and (magic) methods
def __str__(self) -> str:
return self.board.string.replace('-1', 'X ').replace('1', 'O')

@property
def size(self) -> int:
"""Returns the size of the board. If 19x19 then will return 19"""
return self.board.size

@property
def move_count(self) -> int:
"""Moves that have been played since game start minus undone moves"""
return self.board.move_count

def check_win(self) -> int:
"""Returns -1 for P1 win, 0 for no win, 1 for P2 win"""
return self.board.check_win()

# The remainder of the methods to interface with Board_
def reset(self) -> None:
"""Resets to a new instance of `Board`"""
self.board.reset()

def search(self, team: int = None, iterations: int = 10000
) -> Tuple[int, int]:
"""
An alias for search(Board, int, int). Please see Reach.search
```python
>>> a = Board()
>>> a.search()
(9, 9)
>>> b = Board()
>>> search(b)
(9, 9)
```
"""
return search(self, team, iterations)

def get(self, row: int, col: int) -> int:
"""
Gets the piece (-1, 1 or 0) where -1 is a black stone (player 1)
and 1 is a white stone, and 0 is empty of the position.
```python
>>> a = Board()
>>> a.play(9, 9)
>>> a.get(9, 9)
-1
```

Args:
row: `int`
The row of the piece starting from 0

col: `int`
The column of the piece starting from 0

Returns:
piece: `int`
The piece at the position (row, col) of the board.

Raises:
`IndexError`
row or col are out of bounds.
"""
if not 0 <= row < self.size or not 0 <= col < self.size:
raise IndexError(f"Invalid coordinates (row, col): (row, col) "
f"exceeds dimentions of self.sizexself.size.")
return self.board.get(row, col)

def play(self, row: int, col: int) -> None:
"""
Places a piece at the location (row, col)
Args:
row `int`:
The row of which to place the piece
col `int`:
The column of which to place the piece

Raises:
`ValueError`
row or col are out of bounds.
"""
if not 0 <= row < self.size or not 0 <= col < self.size:
raise ValueError(f"Invalid coordinates (row, col): (row, col) "
f"exceeds dimentions of self.sizexself.size.")
self.board.play(row, col)

def undo(self) -> None:
"""Undoes the last move. May be called multiple times."""
self.board.undo()


def search(ref_board: Board, team: int = None, iterations: int = 10000
) -> Tuple[int, int]:
"""
Args:
ref_board: `Board`
The board to be examined.
team: `int`
The number of the piece that will be played this turn. First player is
-1
iterations: `int`
The amount of MCTS iterations to run.

Returns:
bestmove: `Tuple[int, int]`
A 2-tuple of the position to place the next piece for best perceived
outcome

Raises:
`ValueError`
when there is an object type mismatch

```python
>>> a = Board()
>>> a.search()
(9, 9)
>>> b = Board()
>>> search(b)
(9, 9)
```
"""
if team is not None:
print('You have chosen to manually overwrite the `team` parameter. '
'It is recommended to allow this to handle this automatically.')
else:
team = (ref_board.move_count % 2) * 2 - 1

if not isinstance(team, int):
raise ValueError(f"team should be of int and not "
f"type(team)")
if not isinstance(iterations, int):
raise ValueError(f"iterations should be of int and not "
f"type(iterations).")

if isinstance(ref_board, Board):
return search_(ref_board.board, team, iterations)
elif isinstance(ref_board, Board_):
return search_(ref_board, team, iterations)
else:
raise ValueError(f"ref_board should be of Board or Board_ and not"
f" type(ref_board).")


This is my first ever C++ work.

Not my first Python work, however, hence the overall higher quality. Now with...



✔ Python within 80 characters at all times

✔ Python functions well documented

✘ Lack of comments at some places

✘ This is your job to complain, not mine.



Give feedback on any of two languages.







share|improve this question

























    up vote
    2
    down vote

    favorite
    1












    Important



    Prebuilt Python Extensions built for Python 3.6



    Includes Python f-strings (3.6+)



    Complementary GitHub link



    https://github.com/thejhonnyguy/CPyMCTS



    Notable: Previous attempt with stock Python



    Stock Monte Carlo Tree Search implementation to a simple connect 5 game in Python (Includes bugs)



    C++ is the star of the show today with a custom MCTS implementation for the 5 in a row game. To build the pyd I used boost.python with Python 3.6 amd64 and x86 versions. (3.6.4 amd64, 3.6.5 x86)



    C++



    main.cpp



    #define BOOST_PYTHON_STATIC_LIB
    #include <string>
    #include "boost/python.hpp"
    #include "boost/python/def.hpp"
    #include "boost/python/module.hpp"

    #include "board.h"
    #include "search.h"


    BOOST_PYTHON_FUNCTION_OVERLOADS(search_overloads, search, 2, 3);


    BOOST_PYTHON_MODULE(cpymcts)

    using namespace boost::python;
    class_<Board>("Board", init<>())
    .def(init<int>())
    .def("reset", &Board::reset)
    .def("play", &Board::playMove)
    .def("undo", &Board::undoMove)
    .def("get", &Board::getBoardPos)
    .def("check_win", &Board::checkWin)
    .add_property("string", &Board::showString)
    .add_property("size", &Board::getSize)
    .add_property("move_count", &Board::getMoves)
    ;
    def("search", search, search_overloads());



    Below: Node class contained within node.h and node.cpp



    node.h



    #pragma once
    #include "board.h"
    #include <vector>
    #include <string>
    #include <memory>

    // Node class

    class Node

    public:
    Node *parentNode;
    std::vector<std::unique_ptr<Node>> children;
    unsigned long visits;
    long long score;
    unsigned long visit_offset;
    int team_multiplier;
    int move_to[2];
    bool terminal;
    int termscore;

    // Constructors
    // Default. Will assume top node
    Node();
    // Norm
    Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term = 0);

    //Methods
    void Backtrack();
    void CreateChild(unsigned long offset, int mt_r, int mt_c, int term = 0);
    void BackPropagateScore(int s);
    bool IsLeaf();
    double ucb1();
    double ucb1(double exploration);
    Node* SelectBest(Board * board);
    ;


    node.cpp



    #include "node.h"
    #include "board.h"
    #include <string>
    #include <iostream>
    #include <limits>


    // Node implementations

    Node::Node()

    // Default constuctor
    // Node * parentNode will be left undefined
    // It is the duty of the programmer to not do anything foolish
    parentNode = nullptr;
    visits = 0, score = 0, visit_offset = 0, team_multiplier = 1;


    Node::Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term)

    // Constructor used when the node is not the top node.
    // int term default value 0
    parentNode = parent;
    move_to[0] = mt_r; move_to[1] = mt_c;
    visits = 0, score = 0, visit_offset = offset, team_multiplier = -parent->team_multiplier;
    if (term) terminal = true;
    termscore = term;


    void Node::Backtrack()

    std::cout << "yeet" << std::endl;
    if (parentNode == nullptr) return;
    parentNode->Backtrack();


    void Node::CreateChild(unsigned long offset, int mt_r, int mt_c, int term)

    // Creates a child and appends it to Node<std::unique_ptr<Node>> children
    // Nodes created here use the second constructor,
    // and `this` is the parent of its children, hence the `this` argument
    children.push_back(std::make_unique<Node>(this, offset, mt_r, mt_c, term));


    void Node::BackPropagateScore(int s)

    ++visits;
    score += s;
    if (parentNode == nullptr) return;
    parentNode->BackPropagateScore(s);


    bool Node::IsLeaf()

    return !children.size();


    double Node::ucb1()

    return ucb1(sqrt(2));


    double Node::ucb1(double exploration)

    if (!visits) return std::numeric_limits<double>::infinity();
    double average = (double)score / visits;
    return team_multiplier * average + exploration * sqrt(log(parentNode->visits) / visits);


    Node* Node::SelectBest(Board * board)

    if (parentNode != nullptr) board->playMove(move_to[0], move_to[1]);
    // This will only have effect on the top node.
    if (IsLeaf()) return this;
    double max_value = -1.0;
    int max_index = 0;
    for (unsigned int i = 0; i < children.size(); i++)

    double tmp = children[i]->ucb1();
    if (tmp > max_value)

    max_value = tmp;
    max_index = i;


    return children[max_index]->SelectBest(board);



    Below: Board class contained within board.h and board.cpp



    board.h



    #pragma once
    #include <vector>
    #include <array>


    // Class declaration and class method declarations go in the .h file here

    class Board

    private:
    short board[23][23];
    int lastPlaced[2];
    int size;
    int moves;
    std::vector<std::array<int, 2>> playedPieces;

    public:

    Board(); // Default initialization to 19x19 board
    Board(int); // Initialization to NxN board

    std::string showString();
    void print();
    void reset();
    void playMove(int, int);
    void undoMove();
    void replayMoves();
    void manOverridePlayedPieces(std::vector<std::array<int, 2>> ov);
    int checkWin();
    int getMoves();
    int getSize();
    int getBoardPos(int r, int c);

    std::vector<std::array<int, 2>> getObvMoves();
    ;


    board.cpp



    #include "board.h"
    #include <string>
    #include <iostream>
    #include <vector>
    #include <array>
    #include <algorithm>


    // Board class implementation goes here (the literal functions)

    Board::Board()

    size = 19;
    reset();


    Board::Board(const int s)

    size = (s < 19) ? s : 19;
    reset();


    std::string Board::showString()

    std::string str;
    for (int r = 0; r < size; ++r)

    for (int c = 0; c < size; ++c)

    str += std::to_string(board[r][c]);
    if (board[r][c] != -1) str += " ";

    str += "n";

    return str;


    void Board::print()

    for (int r = 0; r < size; ++r)

    for (int c = 0; c < size; ++c)

    std::cout << board[r][c] << "t";

    std::cout << std::endl;



    void Board::reset()

    // Reset values
    moves = 0;

    // Reset board
    for (int r = 0; r < 23; ++r)

    for (int c = 0; c < 23; ++c)

    board[r][c] = 0;



    playedPieces.clear();



    void Board::playMove(int r, int c)

    if (!board[r][c])

    board[r][c] = (moves % 2) * 2 - 1;

    else return;
    ++moves;

    lastPlaced[0] = r;
    lastPlaced[1] = c;
    std::array<int, 2> lp r,c ;
    playedPieces.push_back(lp);


    void Board::undoMove()

    board[lastPlaced[0]][lastPlaced[1]] = 0;
    --moves;
    playedPieces.pop_back();
    if (playedPieces.size())

    lastPlaced[0] = playedPieces[playedPieces.size() - 1][0];
    lastPlaced[1] = playedPieces[playedPieces.size() - 1][1];



    void Board::replayMoves()

    std::cout << "Replaying moves:" << std::endl;
    for (unsigned int i = 0; i < playedPieces.size(); ++i)

    std::cout << i << ": " << playedPieces[i][0] << ", " << playedPieces[i][1] << std::endl;



    void Board::manOverridePlayedPieces(std::vector<std::array<int, 2>> ov)

    playedPieces = ov;
    moves = playedPieces.size();



    int Board::checkWin()

    if (!moves) return 0;
    // Fast version: Check only the surroundings of the last placed piece
    int locR lastPlaced[0] ;
    int locC lastPlaced[1] ;

    // Check horizontal of the area. Verified to work.
    int startC (locC - 4 < 0) ? 0 : locC - 4 ;
    int endC (size - locC >= 4) ? locC : size - 4 ; // Maths checks out
    for (int sC = startC; sC <= endC; ++sC)

    int sum 0 ;
    for (int a = 0; a < 5; ++a)

    sum += board[locR][sC + a];

    if (sum == -5)

    return -1;

    if (sum == 5)

    return 1;



    // Check vertical of the area. Seems to work as well...
    int startR (locR - 4 < 0) ? 0 : locR - 4 ;
    int endR (size - locR >= 4) ? locR : size - 4 ;
    for (int sR = startR; sR <= endR; ++sR)

    int sum 0 ;
    for (int a = 0; a < 5; ++a)

    sum += board[sR + a][locC];

    if (sum == -5)

    return -1;

    if (sum == 5)

    return 1;



    // Check the diagonal (top left to bottom right)
    // startR and startC will be used from above code for streamlining
    // delta-Row / delta-Col to be used in future
    int dRow = locR - startR;
    int dCol = locC - startC;
    int offset (dRow < dCol) ? dRow : dCol ;
    // Too lazy for now to program more to truncate the search if it goes out of the zone
    // trust me I'm a programmer and it won't go out of index
    for (int sD = -offset; sD <= 0; ++sD)

    int sum 0 ;
    for (int a = 0; a < 5; ++a)

    sum += board[locR + sD + a][locC + sD + a];
    //std::cout << "Access: " << locR + sD + a << " " << locC + sD + a << std::endl;

    if (sum == -5)

    return -1;

    if (sum == 5)

    return 1;



    // Check the / diagonal (bottom left to top right) - holy shit I hope this works
    // Calculate the offset to the left of which we start looking
    // Reuse `dRow` from last time
    offset = dCol; // I put a buffer so it won't go out of range
    // Scenario: Top left of board. Program will go too far up. Going too far up is the only concern.
    int truncate (dRow < 4) ? dRow - 4 : 0 ;
    for (int sD = -offset; sD <= truncate; ++sD)

    int sum 0 ;
    for (int a = 0; a < 5; ++a)

    sum += board[locR - sD - a][locC + sD + a];
    //std::cout << "Access: " << (locR + sD + a) << " " << (locC + sD + 4 - a) << std::endl;
    //std::cout << board[locR + sD + a][locC + sD + 4 - a] << " log" << std::endl;

    if (sum == -5)

    return -1;

    if (sum == 5)

    return 1;



    // Draw
    return 0;


    int Board::getMoves()

    return moves;


    int Board::getSize()

    return size;


    int Board::getBoardPos(int r, int c)

    return board[r][c];


    std::vector<std::array<int, 2>> Board::getObvMoves() //TODO

    std::vector<std::array<int, 2>> adjCells;

    for (const std::array<int, 2>& piece : playedPieces)

    int cpR = piece[0];
    int cpC = piece[1];

    std::vector<std::array<int, 2>> direcs;
    // Above
    direcs.push_back( cpR - 1, cpC - 1 );
    direcs.push_back( cpR - 1, cpC );
    direcs.push_back( cpR - 1, cpC + 1 );
    // Beside
    direcs.push_back( cpR, cpC - 1 );
    direcs.push_back( cpR, cpC + 1 );
    // Below
    direcs.push_back( cpR + 1, cpC - 1 );
    direcs.push_back( cpR + 1, cpC );
    direcs.push_back( cpR + 1, cpC + 1 );
    for (const std::array<int, 2>& direc : direcs)

    if (std::find(adjCells.begin(), adjCells.end(), direc) != adjCells.end()) continue;
    if (direc[0] < 0


    return adjCells;



    Below: The MCTS algorithm used contained within search.h and search.cpp



    search.h



    #pragma once
    #define BOOST_PYTHON_STATIC_LIB
    #include "boost/python/tuple.hpp"

    #include "board.h"
    #include "node.h"


    boost::python::tuple search(Board inBoard, int team, unsigned long iterations = 10000);
    void viewStats(Node* n, int t);
    int simulation(Board board);
    int simulation(Board board, bool rebuild);


    search.cpp



    #define BOOST_PYTHON_STATIC_LIB
    #include "boost/python/tuple.hpp"

    #include "search.h"
    #include "node.h"
    #include <iostream>
    #include <vector>
    #include <algorithm>


    boost::python::tuple search(Board inBoard, int team, unsigned long iterations)

    std::cout << "Iterations being run: " << iterations << std::endl;
    if (!inBoard.getMoves())

    std::cout << "Defaulting to middle of board for first move." << std::endl;
    return boost::python::make_tuple(inBoard.getSize() / 2, inBoard.getSize() / 2);


    Node topNode;
    topNode.team_multiplier = -team;

    int info_every(std::max(unsigned long(2000), iterations / 5));

    /////////////////////////////// M C T S //////////////////////////////////
    for (unsigned long iteration = 0; iteration < iterations; ++iteration)

    if (0 == iteration % info_every)

    std::cout << "Progress %: " << iteration * 100 / iterations << std::endl;
    viewStats(&topNode, team);

    Board tmp_board inBoard ;
    Node* bestLeaf = topNode.SelectBest(&tmp_board);
    if (bestLeaf->terminal)

    bestLeaf->BackPropagateScore(bestLeaf->termscore);
    continue;

    if (!bestLeaf->visits)

    int score = simulation(tmp_board, false);
    bestLeaf->BackPropagateScore(score);
    continue;

    // Expand
    std::vector<std::array<int, 2>> obvMoves = tmp_board.getObvMoves();
    if (obvMoves.size() == 0)

    bestLeaf->terminal = true;
    bestLeaf->termscore = 0; // tie

    for (const std::array<int, 2>&move : obvMoves)

    tmp_board.playMove(move[0], move[1]);
    int termscore = tmp_board.checkWin();
    if (termscore) bestLeaf->CreateChild(topNode.visits, move[0], move[1], termscore);
    bestLeaf->CreateChild(topNode.visits, move[0], move[1]);
    // Undo the move
    tmp_board.undoMove();



    // Suggest move

    int bestmove[2];
    unsigned long maxvisits = 0;
    for (const std::unique_ptr<Node>& move : topNode.children)

    if (move->visits > maxvisits)

    maxvisits = move->visits;
    bestmove[0] = move->move_to[0];
    bestmove[1] = move->move_to[1];


    std::cout << "Suggest: " << bestmove[0] << "," << bestmove[1] << std::endl;
    std::cout << "Win %: " << team * topNode.score * 100 / topNode.visits << std::endl;

    return boost::python::make_tuple(bestmove[0], bestmove[1]);



    void viewStats(Node * n, int t)
    n->visits == 0) return;
    std::cout << "Think: " << bestmove[0] << "," << bestmove[1] << std::endl;
    std::cout << "Win %: " << t * n->score * 100 / n->visits << "n" << std::endl;



    int simulation(Board board)

    return simulation(board, true);


    int simulation(Board board, bool rebuild)

    if (rebuild)

    /* Rebuild the board states to make sure it works properly
    Will not guarantee proper working order initially, but
    for the purpose of this function, it will suffice
    */
    std::vector<std::array<int, 2>> tmp;
    for (int r = 0; r < board.getSize(); ++r)

    for (int c = 0; c < board.getSize(); ++c)

    if (board.getBoardPos(r, c)) tmp.push_back(std::array<int, 2> r, c );


    board.manOverridePlayedPieces(tmp);


    while (board.getMoves() < pow(board.getSize(), 2))

    // Make a random move
    std::vector<std::array<int, 2>> choices = board.getObvMoves();
    std::array<int, 2> randMove = choices[rand() % choices.size()];
    board.playMove(randMove[0], randMove[1]);
    if (board.checkWin()) return board.checkWin();

    return 0;



    Python



    Below: the loader and module scripts



    loader.py



    import sys


    if sys.maxsize == 2147483647: # 32 bit python install
    from x86.cpymcts import Board, search

    else: # 64 bit
    from x64.cpymcts import Board, search


    Reach.py (fancy naming)



    """
    This script is designed to function as a higher level interface
    to an end user & programmer. It also handles input checking and such
    NO functionality is removed because of this
    """
    from typing import Tuple
    from loader import Board as Board_, search as search_


    class Board:

    def __init__(self, size: int = 19) -> None:
    if size <= 0:
    raise ValueError("Bad value for size.")
    if size > 19:
    raise ValueError("Size may not be larger than 19.")
    self.board = Board_(size)

    # Read only properties and (magic) methods
    def __str__(self) -> str:
    return self.board.string.replace('-1', 'X ').replace('1', 'O')

    @property
    def size(self) -> int:
    """Returns the size of the board. If 19x19 then will return 19"""
    return self.board.size

    @property
    def move_count(self) -> int:
    """Moves that have been played since game start minus undone moves"""
    return self.board.move_count

    def check_win(self) -> int:
    """Returns -1 for P1 win, 0 for no win, 1 for P2 win"""
    return self.board.check_win()

    # The remainder of the methods to interface with Board_
    def reset(self) -> None:
    """Resets to a new instance of `Board`"""
    self.board.reset()

    def search(self, team: int = None, iterations: int = 10000
    ) -> Tuple[int, int]:
    """
    An alias for search(Board, int, int). Please see Reach.search
    ```python
    >>> a = Board()
    >>> a.search()
    (9, 9)
    >>> b = Board()
    >>> search(b)
    (9, 9)
    ```
    """
    return search(self, team, iterations)

    def get(self, row: int, col: int) -> int:
    """
    Gets the piece (-1, 1 or 0) where -1 is a black stone (player 1)
    and 1 is a white stone, and 0 is empty of the position.
    ```python
    >>> a = Board()
    >>> a.play(9, 9)
    >>> a.get(9, 9)
    -1
    ```

    Args:
    row: `int`
    The row of the piece starting from 0

    col: `int`
    The column of the piece starting from 0

    Returns:
    piece: `int`
    The piece at the position (row, col) of the board.

    Raises:
    `IndexError`
    row or col are out of bounds.
    """
    if not 0 <= row < self.size or not 0 <= col < self.size:
    raise IndexError(f"Invalid coordinates (row, col): (row, col) "
    f"exceeds dimentions of self.sizexself.size.")
    return self.board.get(row, col)

    def play(self, row: int, col: int) -> None:
    """
    Places a piece at the location (row, col)
    Args:
    row `int`:
    The row of which to place the piece
    col `int`:
    The column of which to place the piece

    Raises:
    `ValueError`
    row or col are out of bounds.
    """
    if not 0 <= row < self.size or not 0 <= col < self.size:
    raise ValueError(f"Invalid coordinates (row, col): (row, col) "
    f"exceeds dimentions of self.sizexself.size.")
    self.board.play(row, col)

    def undo(self) -> None:
    """Undoes the last move. May be called multiple times."""
    self.board.undo()


    def search(ref_board: Board, team: int = None, iterations: int = 10000
    ) -> Tuple[int, int]:
    """
    Args:
    ref_board: `Board`
    The board to be examined.
    team: `int`
    The number of the piece that will be played this turn. First player is
    -1
    iterations: `int`
    The amount of MCTS iterations to run.

    Returns:
    bestmove: `Tuple[int, int]`
    A 2-tuple of the position to place the next piece for best perceived
    outcome

    Raises:
    `ValueError`
    when there is an object type mismatch

    ```python
    >>> a = Board()
    >>> a.search()
    (9, 9)
    >>> b = Board()
    >>> search(b)
    (9, 9)
    ```
    """
    if team is not None:
    print('You have chosen to manually overwrite the `team` parameter. '
    'It is recommended to allow this to handle this automatically.')
    else:
    team = (ref_board.move_count % 2) * 2 - 1

    if not isinstance(team, int):
    raise ValueError(f"team should be of int and not "
    f"type(team)")
    if not isinstance(iterations, int):
    raise ValueError(f"iterations should be of int and not "
    f"type(iterations).")

    if isinstance(ref_board, Board):
    return search_(ref_board.board, team, iterations)
    elif isinstance(ref_board, Board_):
    return search_(ref_board, team, iterations)
    else:
    raise ValueError(f"ref_board should be of Board or Board_ and not"
    f" type(ref_board).")


    This is my first ever C++ work.

    Not my first Python work, however, hence the overall higher quality. Now with...



    ✔ Python within 80 characters at all times

    ✔ Python functions well documented

    ✘ Lack of comments at some places

    ✘ This is your job to complain, not mine.



    Give feedback on any of two languages.







    share|improve this question





















      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1





      Important



      Prebuilt Python Extensions built for Python 3.6



      Includes Python f-strings (3.6+)



      Complementary GitHub link



      https://github.com/thejhonnyguy/CPyMCTS



      Notable: Previous attempt with stock Python



      Stock Monte Carlo Tree Search implementation to a simple connect 5 game in Python (Includes bugs)



      C++ is the star of the show today with a custom MCTS implementation for the 5 in a row game. To build the pyd I used boost.python with Python 3.6 amd64 and x86 versions. (3.6.4 amd64, 3.6.5 x86)



      C++



      main.cpp



      #define BOOST_PYTHON_STATIC_LIB
      #include <string>
      #include "boost/python.hpp"
      #include "boost/python/def.hpp"
      #include "boost/python/module.hpp"

      #include "board.h"
      #include "search.h"


      BOOST_PYTHON_FUNCTION_OVERLOADS(search_overloads, search, 2, 3);


      BOOST_PYTHON_MODULE(cpymcts)

      using namespace boost::python;
      class_<Board>("Board", init<>())
      .def(init<int>())
      .def("reset", &Board::reset)
      .def("play", &Board::playMove)
      .def("undo", &Board::undoMove)
      .def("get", &Board::getBoardPos)
      .def("check_win", &Board::checkWin)
      .add_property("string", &Board::showString)
      .add_property("size", &Board::getSize)
      .add_property("move_count", &Board::getMoves)
      ;
      def("search", search, search_overloads());



      Below: Node class contained within node.h and node.cpp



      node.h



      #pragma once
      #include "board.h"
      #include <vector>
      #include <string>
      #include <memory>

      // Node class

      class Node

      public:
      Node *parentNode;
      std::vector<std::unique_ptr<Node>> children;
      unsigned long visits;
      long long score;
      unsigned long visit_offset;
      int team_multiplier;
      int move_to[2];
      bool terminal;
      int termscore;

      // Constructors
      // Default. Will assume top node
      Node();
      // Norm
      Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term = 0);

      //Methods
      void Backtrack();
      void CreateChild(unsigned long offset, int mt_r, int mt_c, int term = 0);
      void BackPropagateScore(int s);
      bool IsLeaf();
      double ucb1();
      double ucb1(double exploration);
      Node* SelectBest(Board * board);
      ;


      node.cpp



      #include "node.h"
      #include "board.h"
      #include <string>
      #include <iostream>
      #include <limits>


      // Node implementations

      Node::Node()

      // Default constuctor
      // Node * parentNode will be left undefined
      // It is the duty of the programmer to not do anything foolish
      parentNode = nullptr;
      visits = 0, score = 0, visit_offset = 0, team_multiplier = 1;


      Node::Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term)

      // Constructor used when the node is not the top node.
      // int term default value 0
      parentNode = parent;
      move_to[0] = mt_r; move_to[1] = mt_c;
      visits = 0, score = 0, visit_offset = offset, team_multiplier = -parent->team_multiplier;
      if (term) terminal = true;
      termscore = term;


      void Node::Backtrack()

      std::cout << "yeet" << std::endl;
      if (parentNode == nullptr) return;
      parentNode->Backtrack();


      void Node::CreateChild(unsigned long offset, int mt_r, int mt_c, int term)

      // Creates a child and appends it to Node<std::unique_ptr<Node>> children
      // Nodes created here use the second constructor,
      // and `this` is the parent of its children, hence the `this` argument
      children.push_back(std::make_unique<Node>(this, offset, mt_r, mt_c, term));


      void Node::BackPropagateScore(int s)

      ++visits;
      score += s;
      if (parentNode == nullptr) return;
      parentNode->BackPropagateScore(s);


      bool Node::IsLeaf()

      return !children.size();


      double Node::ucb1()

      return ucb1(sqrt(2));


      double Node::ucb1(double exploration)

      if (!visits) return std::numeric_limits<double>::infinity();
      double average = (double)score / visits;
      return team_multiplier * average + exploration * sqrt(log(parentNode->visits) / visits);


      Node* Node::SelectBest(Board * board)

      if (parentNode != nullptr) board->playMove(move_to[0], move_to[1]);
      // This will only have effect on the top node.
      if (IsLeaf()) return this;
      double max_value = -1.0;
      int max_index = 0;
      for (unsigned int i = 0; i < children.size(); i++)

      double tmp = children[i]->ucb1();
      if (tmp > max_value)

      max_value = tmp;
      max_index = i;


      return children[max_index]->SelectBest(board);



      Below: Board class contained within board.h and board.cpp



      board.h



      #pragma once
      #include <vector>
      #include <array>


      // Class declaration and class method declarations go in the .h file here

      class Board

      private:
      short board[23][23];
      int lastPlaced[2];
      int size;
      int moves;
      std::vector<std::array<int, 2>> playedPieces;

      public:

      Board(); // Default initialization to 19x19 board
      Board(int); // Initialization to NxN board

      std::string showString();
      void print();
      void reset();
      void playMove(int, int);
      void undoMove();
      void replayMoves();
      void manOverridePlayedPieces(std::vector<std::array<int, 2>> ov);
      int checkWin();
      int getMoves();
      int getSize();
      int getBoardPos(int r, int c);

      std::vector<std::array<int, 2>> getObvMoves();
      ;


      board.cpp



      #include "board.h"
      #include <string>
      #include <iostream>
      #include <vector>
      #include <array>
      #include <algorithm>


      // Board class implementation goes here (the literal functions)

      Board::Board()

      size = 19;
      reset();


      Board::Board(const int s)

      size = (s < 19) ? s : 19;
      reset();


      std::string Board::showString()

      std::string str;
      for (int r = 0; r < size; ++r)

      for (int c = 0; c < size; ++c)

      str += std::to_string(board[r][c]);
      if (board[r][c] != -1) str += " ";

      str += "n";

      return str;


      void Board::print()

      for (int r = 0; r < size; ++r)

      for (int c = 0; c < size; ++c)

      std::cout << board[r][c] << "t";

      std::cout << std::endl;



      void Board::reset()

      // Reset values
      moves = 0;

      // Reset board
      for (int r = 0; r < 23; ++r)

      for (int c = 0; c < 23; ++c)

      board[r][c] = 0;



      playedPieces.clear();



      void Board::playMove(int r, int c)

      if (!board[r][c])

      board[r][c] = (moves % 2) * 2 - 1;

      else return;
      ++moves;

      lastPlaced[0] = r;
      lastPlaced[1] = c;
      std::array<int, 2> lp r,c ;
      playedPieces.push_back(lp);


      void Board::undoMove()

      board[lastPlaced[0]][lastPlaced[1]] = 0;
      --moves;
      playedPieces.pop_back();
      if (playedPieces.size())

      lastPlaced[0] = playedPieces[playedPieces.size() - 1][0];
      lastPlaced[1] = playedPieces[playedPieces.size() - 1][1];



      void Board::replayMoves()

      std::cout << "Replaying moves:" << std::endl;
      for (unsigned int i = 0; i < playedPieces.size(); ++i)

      std::cout << i << ": " << playedPieces[i][0] << ", " << playedPieces[i][1] << std::endl;



      void Board::manOverridePlayedPieces(std::vector<std::array<int, 2>> ov)

      playedPieces = ov;
      moves = playedPieces.size();



      int Board::checkWin()

      if (!moves) return 0;
      // Fast version: Check only the surroundings of the last placed piece
      int locR lastPlaced[0] ;
      int locC lastPlaced[1] ;

      // Check horizontal of the area. Verified to work.
      int startC (locC - 4 < 0) ? 0 : locC - 4 ;
      int endC (size - locC >= 4) ? locC : size - 4 ; // Maths checks out
      for (int sC = startC; sC <= endC; ++sC)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR][sC + a];

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check vertical of the area. Seems to work as well...
      int startR (locR - 4 < 0) ? 0 : locR - 4 ;
      int endR (size - locR >= 4) ? locR : size - 4 ;
      for (int sR = startR; sR <= endR; ++sR)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[sR + a][locC];

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check the diagonal (top left to bottom right)
      // startR and startC will be used from above code for streamlining
      // delta-Row / delta-Col to be used in future
      int dRow = locR - startR;
      int dCol = locC - startC;
      int offset (dRow < dCol) ? dRow : dCol ;
      // Too lazy for now to program more to truncate the search if it goes out of the zone
      // trust me I'm a programmer and it won't go out of index
      for (int sD = -offset; sD <= 0; ++sD)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR + sD + a][locC + sD + a];
      //std::cout << "Access: " << locR + sD + a << " " << locC + sD + a << std::endl;

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check the / diagonal (bottom left to top right) - holy shit I hope this works
      // Calculate the offset to the left of which we start looking
      // Reuse `dRow` from last time
      offset = dCol; // I put a buffer so it won't go out of range
      // Scenario: Top left of board. Program will go too far up. Going too far up is the only concern.
      int truncate (dRow < 4) ? dRow - 4 : 0 ;
      for (int sD = -offset; sD <= truncate; ++sD)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR - sD - a][locC + sD + a];
      //std::cout << "Access: " << (locR + sD + a) << " " << (locC + sD + 4 - a) << std::endl;
      //std::cout << board[locR + sD + a][locC + sD + 4 - a] << " log" << std::endl;

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Draw
      return 0;


      int Board::getMoves()

      return moves;


      int Board::getSize()

      return size;


      int Board::getBoardPos(int r, int c)

      return board[r][c];


      std::vector<std::array<int, 2>> Board::getObvMoves() //TODO

      std::vector<std::array<int, 2>> adjCells;

      for (const std::array<int, 2>& piece : playedPieces)

      int cpR = piece[0];
      int cpC = piece[1];

      std::vector<std::array<int, 2>> direcs;
      // Above
      direcs.push_back( cpR - 1, cpC - 1 );
      direcs.push_back( cpR - 1, cpC );
      direcs.push_back( cpR - 1, cpC + 1 );
      // Beside
      direcs.push_back( cpR, cpC - 1 );
      direcs.push_back( cpR, cpC + 1 );
      // Below
      direcs.push_back( cpR + 1, cpC - 1 );
      direcs.push_back( cpR + 1, cpC );
      direcs.push_back( cpR + 1, cpC + 1 );
      for (const std::array<int, 2>& direc : direcs)

      if (std::find(adjCells.begin(), adjCells.end(), direc) != adjCells.end()) continue;
      if (direc[0] < 0


      return adjCells;



      Below: The MCTS algorithm used contained within search.h and search.cpp



      search.h



      #pragma once
      #define BOOST_PYTHON_STATIC_LIB
      #include "boost/python/tuple.hpp"

      #include "board.h"
      #include "node.h"


      boost::python::tuple search(Board inBoard, int team, unsigned long iterations = 10000);
      void viewStats(Node* n, int t);
      int simulation(Board board);
      int simulation(Board board, bool rebuild);


      search.cpp



      #define BOOST_PYTHON_STATIC_LIB
      #include "boost/python/tuple.hpp"

      #include "search.h"
      #include "node.h"
      #include <iostream>
      #include <vector>
      #include <algorithm>


      boost::python::tuple search(Board inBoard, int team, unsigned long iterations)

      std::cout << "Iterations being run: " << iterations << std::endl;
      if (!inBoard.getMoves())

      std::cout << "Defaulting to middle of board for first move." << std::endl;
      return boost::python::make_tuple(inBoard.getSize() / 2, inBoard.getSize() / 2);


      Node topNode;
      topNode.team_multiplier = -team;

      int info_every(std::max(unsigned long(2000), iterations / 5));

      /////////////////////////////// M C T S //////////////////////////////////
      for (unsigned long iteration = 0; iteration < iterations; ++iteration)

      if (0 == iteration % info_every)

      std::cout << "Progress %: " << iteration * 100 / iterations << std::endl;
      viewStats(&topNode, team);

      Board tmp_board inBoard ;
      Node* bestLeaf = topNode.SelectBest(&tmp_board);
      if (bestLeaf->terminal)

      bestLeaf->BackPropagateScore(bestLeaf->termscore);
      continue;

      if (!bestLeaf->visits)

      int score = simulation(tmp_board, false);
      bestLeaf->BackPropagateScore(score);
      continue;

      // Expand
      std::vector<std::array<int, 2>> obvMoves = tmp_board.getObvMoves();
      if (obvMoves.size() == 0)

      bestLeaf->terminal = true;
      bestLeaf->termscore = 0; // tie

      for (const std::array<int, 2>&move : obvMoves)

      tmp_board.playMove(move[0], move[1]);
      int termscore = tmp_board.checkWin();
      if (termscore) bestLeaf->CreateChild(topNode.visits, move[0], move[1], termscore);
      bestLeaf->CreateChild(topNode.visits, move[0], move[1]);
      // Undo the move
      tmp_board.undoMove();



      // Suggest move

      int bestmove[2];
      unsigned long maxvisits = 0;
      for (const std::unique_ptr<Node>& move : topNode.children)

      if (move->visits > maxvisits)

      maxvisits = move->visits;
      bestmove[0] = move->move_to[0];
      bestmove[1] = move->move_to[1];


      std::cout << "Suggest: " << bestmove[0] << "," << bestmove[1] << std::endl;
      std::cout << "Win %: " << team * topNode.score * 100 / topNode.visits << std::endl;

      return boost::python::make_tuple(bestmove[0], bestmove[1]);



      void viewStats(Node * n, int t)
      n->visits == 0) return;
      std::cout << "Think: " << bestmove[0] << "," << bestmove[1] << std::endl;
      std::cout << "Win %: " << t * n->score * 100 / n->visits << "n" << std::endl;



      int simulation(Board board)

      return simulation(board, true);


      int simulation(Board board, bool rebuild)

      if (rebuild)

      /* Rebuild the board states to make sure it works properly
      Will not guarantee proper working order initially, but
      for the purpose of this function, it will suffice
      */
      std::vector<std::array<int, 2>> tmp;
      for (int r = 0; r < board.getSize(); ++r)

      for (int c = 0; c < board.getSize(); ++c)

      if (board.getBoardPos(r, c)) tmp.push_back(std::array<int, 2> r, c );


      board.manOverridePlayedPieces(tmp);


      while (board.getMoves() < pow(board.getSize(), 2))

      // Make a random move
      std::vector<std::array<int, 2>> choices = board.getObvMoves();
      std::array<int, 2> randMove = choices[rand() % choices.size()];
      board.playMove(randMove[0], randMove[1]);
      if (board.checkWin()) return board.checkWin();

      return 0;



      Python



      Below: the loader and module scripts



      loader.py



      import sys


      if sys.maxsize == 2147483647: # 32 bit python install
      from x86.cpymcts import Board, search

      else: # 64 bit
      from x64.cpymcts import Board, search


      Reach.py (fancy naming)



      """
      This script is designed to function as a higher level interface
      to an end user & programmer. It also handles input checking and such
      NO functionality is removed because of this
      """
      from typing import Tuple
      from loader import Board as Board_, search as search_


      class Board:

      def __init__(self, size: int = 19) -> None:
      if size <= 0:
      raise ValueError("Bad value for size.")
      if size > 19:
      raise ValueError("Size may not be larger than 19.")
      self.board = Board_(size)

      # Read only properties and (magic) methods
      def __str__(self) -> str:
      return self.board.string.replace('-1', 'X ').replace('1', 'O')

      @property
      def size(self) -> int:
      """Returns the size of the board. If 19x19 then will return 19"""
      return self.board.size

      @property
      def move_count(self) -> int:
      """Moves that have been played since game start minus undone moves"""
      return self.board.move_count

      def check_win(self) -> int:
      """Returns -1 for P1 win, 0 for no win, 1 for P2 win"""
      return self.board.check_win()

      # The remainder of the methods to interface with Board_
      def reset(self) -> None:
      """Resets to a new instance of `Board`"""
      self.board.reset()

      def search(self, team: int = None, iterations: int = 10000
      ) -> Tuple[int, int]:
      """
      An alias for search(Board, int, int). Please see Reach.search
      ```python
      >>> a = Board()
      >>> a.search()
      (9, 9)
      >>> b = Board()
      >>> search(b)
      (9, 9)
      ```
      """
      return search(self, team, iterations)

      def get(self, row: int, col: int) -> int:
      """
      Gets the piece (-1, 1 or 0) where -1 is a black stone (player 1)
      and 1 is a white stone, and 0 is empty of the position.
      ```python
      >>> a = Board()
      >>> a.play(9, 9)
      >>> a.get(9, 9)
      -1
      ```

      Args:
      row: `int`
      The row of the piece starting from 0

      col: `int`
      The column of the piece starting from 0

      Returns:
      piece: `int`
      The piece at the position (row, col) of the board.

      Raises:
      `IndexError`
      row or col are out of bounds.
      """
      if not 0 <= row < self.size or not 0 <= col < self.size:
      raise IndexError(f"Invalid coordinates (row, col): (row, col) "
      f"exceeds dimentions of self.sizexself.size.")
      return self.board.get(row, col)

      def play(self, row: int, col: int) -> None:
      """
      Places a piece at the location (row, col)
      Args:
      row `int`:
      The row of which to place the piece
      col `int`:
      The column of which to place the piece

      Raises:
      `ValueError`
      row or col are out of bounds.
      """
      if not 0 <= row < self.size or not 0 <= col < self.size:
      raise ValueError(f"Invalid coordinates (row, col): (row, col) "
      f"exceeds dimentions of self.sizexself.size.")
      self.board.play(row, col)

      def undo(self) -> None:
      """Undoes the last move. May be called multiple times."""
      self.board.undo()


      def search(ref_board: Board, team: int = None, iterations: int = 10000
      ) -> Tuple[int, int]:
      """
      Args:
      ref_board: `Board`
      The board to be examined.
      team: `int`
      The number of the piece that will be played this turn. First player is
      -1
      iterations: `int`
      The amount of MCTS iterations to run.

      Returns:
      bestmove: `Tuple[int, int]`
      A 2-tuple of the position to place the next piece for best perceived
      outcome

      Raises:
      `ValueError`
      when there is an object type mismatch

      ```python
      >>> a = Board()
      >>> a.search()
      (9, 9)
      >>> b = Board()
      >>> search(b)
      (9, 9)
      ```
      """
      if team is not None:
      print('You have chosen to manually overwrite the `team` parameter. '
      'It is recommended to allow this to handle this automatically.')
      else:
      team = (ref_board.move_count % 2) * 2 - 1

      if not isinstance(team, int):
      raise ValueError(f"team should be of int and not "
      f"type(team)")
      if not isinstance(iterations, int):
      raise ValueError(f"iterations should be of int and not "
      f"type(iterations).")

      if isinstance(ref_board, Board):
      return search_(ref_board.board, team, iterations)
      elif isinstance(ref_board, Board_):
      return search_(ref_board, team, iterations)
      else:
      raise ValueError(f"ref_board should be of Board or Board_ and not"
      f" type(ref_board).")


      This is my first ever C++ work.

      Not my first Python work, however, hence the overall higher quality. Now with...



      ✔ Python within 80 characters at all times

      ✔ Python functions well documented

      ✘ Lack of comments at some places

      ✘ This is your job to complain, not mine.



      Give feedback on any of two languages.







      share|improve this question











      Important



      Prebuilt Python Extensions built for Python 3.6



      Includes Python f-strings (3.6+)



      Complementary GitHub link



      https://github.com/thejhonnyguy/CPyMCTS



      Notable: Previous attempt with stock Python



      Stock Monte Carlo Tree Search implementation to a simple connect 5 game in Python (Includes bugs)



      C++ is the star of the show today with a custom MCTS implementation for the 5 in a row game. To build the pyd I used boost.python with Python 3.6 amd64 and x86 versions. (3.6.4 amd64, 3.6.5 x86)



      C++



      main.cpp



      #define BOOST_PYTHON_STATIC_LIB
      #include <string>
      #include "boost/python.hpp"
      #include "boost/python/def.hpp"
      #include "boost/python/module.hpp"

      #include "board.h"
      #include "search.h"


      BOOST_PYTHON_FUNCTION_OVERLOADS(search_overloads, search, 2, 3);


      BOOST_PYTHON_MODULE(cpymcts)

      using namespace boost::python;
      class_<Board>("Board", init<>())
      .def(init<int>())
      .def("reset", &Board::reset)
      .def("play", &Board::playMove)
      .def("undo", &Board::undoMove)
      .def("get", &Board::getBoardPos)
      .def("check_win", &Board::checkWin)
      .add_property("string", &Board::showString)
      .add_property("size", &Board::getSize)
      .add_property("move_count", &Board::getMoves)
      ;
      def("search", search, search_overloads());



      Below: Node class contained within node.h and node.cpp



      node.h



      #pragma once
      #include "board.h"
      #include <vector>
      #include <string>
      #include <memory>

      // Node class

      class Node

      public:
      Node *parentNode;
      std::vector<std::unique_ptr<Node>> children;
      unsigned long visits;
      long long score;
      unsigned long visit_offset;
      int team_multiplier;
      int move_to[2];
      bool terminal;
      int termscore;

      // Constructors
      // Default. Will assume top node
      Node();
      // Norm
      Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term = 0);

      //Methods
      void Backtrack();
      void CreateChild(unsigned long offset, int mt_r, int mt_c, int term = 0);
      void BackPropagateScore(int s);
      bool IsLeaf();
      double ucb1();
      double ucb1(double exploration);
      Node* SelectBest(Board * board);
      ;


      node.cpp



      #include "node.h"
      #include "board.h"
      #include <string>
      #include <iostream>
      #include <limits>


      // Node implementations

      Node::Node()

      // Default constuctor
      // Node * parentNode will be left undefined
      // It is the duty of the programmer to not do anything foolish
      parentNode = nullptr;
      visits = 0, score = 0, visit_offset = 0, team_multiplier = 1;


      Node::Node(Node *parent, unsigned long offset, int mt_r, int mt_c, int term)

      // Constructor used when the node is not the top node.
      // int term default value 0
      parentNode = parent;
      move_to[0] = mt_r; move_to[1] = mt_c;
      visits = 0, score = 0, visit_offset = offset, team_multiplier = -parent->team_multiplier;
      if (term) terminal = true;
      termscore = term;


      void Node::Backtrack()

      std::cout << "yeet" << std::endl;
      if (parentNode == nullptr) return;
      parentNode->Backtrack();


      void Node::CreateChild(unsigned long offset, int mt_r, int mt_c, int term)

      // Creates a child and appends it to Node<std::unique_ptr<Node>> children
      // Nodes created here use the second constructor,
      // and `this` is the parent of its children, hence the `this` argument
      children.push_back(std::make_unique<Node>(this, offset, mt_r, mt_c, term));


      void Node::BackPropagateScore(int s)

      ++visits;
      score += s;
      if (parentNode == nullptr) return;
      parentNode->BackPropagateScore(s);


      bool Node::IsLeaf()

      return !children.size();


      double Node::ucb1()

      return ucb1(sqrt(2));


      double Node::ucb1(double exploration)

      if (!visits) return std::numeric_limits<double>::infinity();
      double average = (double)score / visits;
      return team_multiplier * average + exploration * sqrt(log(parentNode->visits) / visits);


      Node* Node::SelectBest(Board * board)

      if (parentNode != nullptr) board->playMove(move_to[0], move_to[1]);
      // This will only have effect on the top node.
      if (IsLeaf()) return this;
      double max_value = -1.0;
      int max_index = 0;
      for (unsigned int i = 0; i < children.size(); i++)

      double tmp = children[i]->ucb1();
      if (tmp > max_value)

      max_value = tmp;
      max_index = i;


      return children[max_index]->SelectBest(board);



      Below: Board class contained within board.h and board.cpp



      board.h



      #pragma once
      #include <vector>
      #include <array>


      // Class declaration and class method declarations go in the .h file here

      class Board

      private:
      short board[23][23];
      int lastPlaced[2];
      int size;
      int moves;
      std::vector<std::array<int, 2>> playedPieces;

      public:

      Board(); // Default initialization to 19x19 board
      Board(int); // Initialization to NxN board

      std::string showString();
      void print();
      void reset();
      void playMove(int, int);
      void undoMove();
      void replayMoves();
      void manOverridePlayedPieces(std::vector<std::array<int, 2>> ov);
      int checkWin();
      int getMoves();
      int getSize();
      int getBoardPos(int r, int c);

      std::vector<std::array<int, 2>> getObvMoves();
      ;


      board.cpp



      #include "board.h"
      #include <string>
      #include <iostream>
      #include <vector>
      #include <array>
      #include <algorithm>


      // Board class implementation goes here (the literal functions)

      Board::Board()

      size = 19;
      reset();


      Board::Board(const int s)

      size = (s < 19) ? s : 19;
      reset();


      std::string Board::showString()

      std::string str;
      for (int r = 0; r < size; ++r)

      for (int c = 0; c < size; ++c)

      str += std::to_string(board[r][c]);
      if (board[r][c] != -1) str += " ";

      str += "n";

      return str;


      void Board::print()

      for (int r = 0; r < size; ++r)

      for (int c = 0; c < size; ++c)

      std::cout << board[r][c] << "t";

      std::cout << std::endl;



      void Board::reset()

      // Reset values
      moves = 0;

      // Reset board
      for (int r = 0; r < 23; ++r)

      for (int c = 0; c < 23; ++c)

      board[r][c] = 0;



      playedPieces.clear();



      void Board::playMove(int r, int c)

      if (!board[r][c])

      board[r][c] = (moves % 2) * 2 - 1;

      else return;
      ++moves;

      lastPlaced[0] = r;
      lastPlaced[1] = c;
      std::array<int, 2> lp r,c ;
      playedPieces.push_back(lp);


      void Board::undoMove()

      board[lastPlaced[0]][lastPlaced[1]] = 0;
      --moves;
      playedPieces.pop_back();
      if (playedPieces.size())

      lastPlaced[0] = playedPieces[playedPieces.size() - 1][0];
      lastPlaced[1] = playedPieces[playedPieces.size() - 1][1];



      void Board::replayMoves()

      std::cout << "Replaying moves:" << std::endl;
      for (unsigned int i = 0; i < playedPieces.size(); ++i)

      std::cout << i << ": " << playedPieces[i][0] << ", " << playedPieces[i][1] << std::endl;



      void Board::manOverridePlayedPieces(std::vector<std::array<int, 2>> ov)

      playedPieces = ov;
      moves = playedPieces.size();



      int Board::checkWin()

      if (!moves) return 0;
      // Fast version: Check only the surroundings of the last placed piece
      int locR lastPlaced[0] ;
      int locC lastPlaced[1] ;

      // Check horizontal of the area. Verified to work.
      int startC (locC - 4 < 0) ? 0 : locC - 4 ;
      int endC (size - locC >= 4) ? locC : size - 4 ; // Maths checks out
      for (int sC = startC; sC <= endC; ++sC)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR][sC + a];

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check vertical of the area. Seems to work as well...
      int startR (locR - 4 < 0) ? 0 : locR - 4 ;
      int endR (size - locR >= 4) ? locR : size - 4 ;
      for (int sR = startR; sR <= endR; ++sR)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[sR + a][locC];

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check the diagonal (top left to bottom right)
      // startR and startC will be used from above code for streamlining
      // delta-Row / delta-Col to be used in future
      int dRow = locR - startR;
      int dCol = locC - startC;
      int offset (dRow < dCol) ? dRow : dCol ;
      // Too lazy for now to program more to truncate the search if it goes out of the zone
      // trust me I'm a programmer and it won't go out of index
      for (int sD = -offset; sD <= 0; ++sD)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR + sD + a][locC + sD + a];
      //std::cout << "Access: " << locR + sD + a << " " << locC + sD + a << std::endl;

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Check the / diagonal (bottom left to top right) - holy shit I hope this works
      // Calculate the offset to the left of which we start looking
      // Reuse `dRow` from last time
      offset = dCol; // I put a buffer so it won't go out of range
      // Scenario: Top left of board. Program will go too far up. Going too far up is the only concern.
      int truncate (dRow < 4) ? dRow - 4 : 0 ;
      for (int sD = -offset; sD <= truncate; ++sD)

      int sum 0 ;
      for (int a = 0; a < 5; ++a)

      sum += board[locR - sD - a][locC + sD + a];
      //std::cout << "Access: " << (locR + sD + a) << " " << (locC + sD + 4 - a) << std::endl;
      //std::cout << board[locR + sD + a][locC + sD + 4 - a] << " log" << std::endl;

      if (sum == -5)

      return -1;

      if (sum == 5)

      return 1;



      // Draw
      return 0;


      int Board::getMoves()

      return moves;


      int Board::getSize()

      return size;


      int Board::getBoardPos(int r, int c)

      return board[r][c];


      std::vector<std::array<int, 2>> Board::getObvMoves() //TODO

      std::vector<std::array<int, 2>> adjCells;

      for (const std::array<int, 2>& piece : playedPieces)

      int cpR = piece[0];
      int cpC = piece[1];

      std::vector<std::array<int, 2>> direcs;
      // Above
      direcs.push_back( cpR - 1, cpC - 1 );
      direcs.push_back( cpR - 1, cpC );
      direcs.push_back( cpR - 1, cpC + 1 );
      // Beside
      direcs.push_back( cpR, cpC - 1 );
      direcs.push_back( cpR, cpC + 1 );
      // Below
      direcs.push_back( cpR + 1, cpC - 1 );
      direcs.push_back( cpR + 1, cpC );
      direcs.push_back( cpR + 1, cpC + 1 );
      for (const std::array<int, 2>& direc : direcs)

      if (std::find(adjCells.begin(), adjCells.end(), direc) != adjCells.end()) continue;
      if (direc[0] < 0


      return adjCells;



      Below: The MCTS algorithm used contained within search.h and search.cpp



      search.h



      #pragma once
      #define BOOST_PYTHON_STATIC_LIB
      #include "boost/python/tuple.hpp"

      #include "board.h"
      #include "node.h"


      boost::python::tuple search(Board inBoard, int team, unsigned long iterations = 10000);
      void viewStats(Node* n, int t);
      int simulation(Board board);
      int simulation(Board board, bool rebuild);


      search.cpp



      #define BOOST_PYTHON_STATIC_LIB
      #include "boost/python/tuple.hpp"

      #include "search.h"
      #include "node.h"
      #include <iostream>
      #include <vector>
      #include <algorithm>


      boost::python::tuple search(Board inBoard, int team, unsigned long iterations)

      std::cout << "Iterations being run: " << iterations << std::endl;
      if (!inBoard.getMoves())

      std::cout << "Defaulting to middle of board for first move." << std::endl;
      return boost::python::make_tuple(inBoard.getSize() / 2, inBoard.getSize() / 2);


      Node topNode;
      topNode.team_multiplier = -team;

      int info_every(std::max(unsigned long(2000), iterations / 5));

      /////////////////////////////// M C T S //////////////////////////////////
      for (unsigned long iteration = 0; iteration < iterations; ++iteration)

      if (0 == iteration % info_every)

      std::cout << "Progress %: " << iteration * 100 / iterations << std::endl;
      viewStats(&topNode, team);

      Board tmp_board inBoard ;
      Node* bestLeaf = topNode.SelectBest(&tmp_board);
      if (bestLeaf->terminal)

      bestLeaf->BackPropagateScore(bestLeaf->termscore);
      continue;

      if (!bestLeaf->visits)

      int score = simulation(tmp_board, false);
      bestLeaf->BackPropagateScore(score);
      continue;

      // Expand
      std::vector<std::array<int, 2>> obvMoves = tmp_board.getObvMoves();
      if (obvMoves.size() == 0)

      bestLeaf->terminal = true;
      bestLeaf->termscore = 0; // tie

      for (const std::array<int, 2>&move : obvMoves)

      tmp_board.playMove(move[0], move[1]);
      int termscore = tmp_board.checkWin();
      if (termscore) bestLeaf->CreateChild(topNode.visits, move[0], move[1], termscore);
      bestLeaf->CreateChild(topNode.visits, move[0], move[1]);
      // Undo the move
      tmp_board.undoMove();



      // Suggest move

      int bestmove[2];
      unsigned long maxvisits = 0;
      for (const std::unique_ptr<Node>& move : topNode.children)

      if (move->visits > maxvisits)

      maxvisits = move->visits;
      bestmove[0] = move->move_to[0];
      bestmove[1] = move->move_to[1];


      std::cout << "Suggest: " << bestmove[0] << "," << bestmove[1] << std::endl;
      std::cout << "Win %: " << team * topNode.score * 100 / topNode.visits << std::endl;

      return boost::python::make_tuple(bestmove[0], bestmove[1]);



      void viewStats(Node * n, int t)
      n->visits == 0) return;
      std::cout << "Think: " << bestmove[0] << "," << bestmove[1] << std::endl;
      std::cout << "Win %: " << t * n->score * 100 / n->visits << "n" << std::endl;



      int simulation(Board board)

      return simulation(board, true);


      int simulation(Board board, bool rebuild)

      if (rebuild)

      /* Rebuild the board states to make sure it works properly
      Will not guarantee proper working order initially, but
      for the purpose of this function, it will suffice
      */
      std::vector<std::array<int, 2>> tmp;
      for (int r = 0; r < board.getSize(); ++r)

      for (int c = 0; c < board.getSize(); ++c)

      if (board.getBoardPos(r, c)) tmp.push_back(std::array<int, 2> r, c );


      board.manOverridePlayedPieces(tmp);


      while (board.getMoves() < pow(board.getSize(), 2))

      // Make a random move
      std::vector<std::array<int, 2>> choices = board.getObvMoves();
      std::array<int, 2> randMove = choices[rand() % choices.size()];
      board.playMove(randMove[0], randMove[1]);
      if (board.checkWin()) return board.checkWin();

      return 0;



      Python



      Below: the loader and module scripts



      loader.py



      import sys


      if sys.maxsize == 2147483647: # 32 bit python install
      from x86.cpymcts import Board, search

      else: # 64 bit
      from x64.cpymcts import Board, search


      Reach.py (fancy naming)



      """
      This script is designed to function as a higher level interface
      to an end user & programmer. It also handles input checking and such
      NO functionality is removed because of this
      """
      from typing import Tuple
      from loader import Board as Board_, search as search_


      class Board:

      def __init__(self, size: int = 19) -> None:
      if size <= 0:
      raise ValueError("Bad value for size.")
      if size > 19:
      raise ValueError("Size may not be larger than 19.")
      self.board = Board_(size)

      # Read only properties and (magic) methods
      def __str__(self) -> str:
      return self.board.string.replace('-1', 'X ').replace('1', 'O')

      @property
      def size(self) -> int:
      """Returns the size of the board. If 19x19 then will return 19"""
      return self.board.size

      @property
      def move_count(self) -> int:
      """Moves that have been played since game start minus undone moves"""
      return self.board.move_count

      def check_win(self) -> int:
      """Returns -1 for P1 win, 0 for no win, 1 for P2 win"""
      return self.board.check_win()

      # The remainder of the methods to interface with Board_
      def reset(self) -> None:
      """Resets to a new instance of `Board`"""
      self.board.reset()

      def search(self, team: int = None, iterations: int = 10000
      ) -> Tuple[int, int]:
      """
      An alias for search(Board, int, int). Please see Reach.search
      ```python
      >>> a = Board()
      >>> a.search()
      (9, 9)
      >>> b = Board()
      >>> search(b)
      (9, 9)
      ```
      """
      return search(self, team, iterations)

      def get(self, row: int, col: int) -> int:
      """
      Gets the piece (-1, 1 or 0) where -1 is a black stone (player 1)
      and 1 is a white stone, and 0 is empty of the position.
      ```python
      >>> a = Board()
      >>> a.play(9, 9)
      >>> a.get(9, 9)
      -1
      ```

      Args:
      row: `int`
      The row of the piece starting from 0

      col: `int`
      The column of the piece starting from 0

      Returns:
      piece: `int`
      The piece at the position (row, col) of the board.

      Raises:
      `IndexError`
      row or col are out of bounds.
      """
      if not 0 <= row < self.size or not 0 <= col < self.size:
      raise IndexError(f"Invalid coordinates (row, col): (row, col) "
      f"exceeds dimentions of self.sizexself.size.")
      return self.board.get(row, col)

      def play(self, row: int, col: int) -> None:
      """
      Places a piece at the location (row, col)
      Args:
      row `int`:
      The row of which to place the piece
      col `int`:
      The column of which to place the piece

      Raises:
      `ValueError`
      row or col are out of bounds.
      """
      if not 0 <= row < self.size or not 0 <= col < self.size:
      raise ValueError(f"Invalid coordinates (row, col): (row, col) "
      f"exceeds dimentions of self.sizexself.size.")
      self.board.play(row, col)

      def undo(self) -> None:
      """Undoes the last move. May be called multiple times."""
      self.board.undo()


      def search(ref_board: Board, team: int = None, iterations: int = 10000
      ) -> Tuple[int, int]:
      """
      Args:
      ref_board: `Board`
      The board to be examined.
      team: `int`
      The number of the piece that will be played this turn. First player is
      -1
      iterations: `int`
      The amount of MCTS iterations to run.

      Returns:
      bestmove: `Tuple[int, int]`
      A 2-tuple of the position to place the next piece for best perceived
      outcome

      Raises:
      `ValueError`
      when there is an object type mismatch

      ```python
      >>> a = Board()
      >>> a.search()
      (9, 9)
      >>> b = Board()
      >>> search(b)
      (9, 9)
      ```
      """
      if team is not None:
      print('You have chosen to manually overwrite the `team` parameter. '
      'It is recommended to allow this to handle this automatically.')
      else:
      team = (ref_board.move_count % 2) * 2 - 1

      if not isinstance(team, int):
      raise ValueError(f"team should be of int and not "
      f"type(team)")
      if not isinstance(iterations, int):
      raise ValueError(f"iterations should be of int and not "
      f"type(iterations).")

      if isinstance(ref_board, Board):
      return search_(ref_board.board, team, iterations)
      elif isinstance(ref_board, Board_):
      return search_(ref_board, team, iterations)
      else:
      raise ValueError(f"ref_board should be of Board or Board_ and not"
      f" type(ref_board).")


      This is my first ever C++ work.

      Not my first Python work, however, hence the overall higher quality. Now with...



      ✔ Python within 80 characters at all times

      ✔ Python functions well documented

      ✘ Lack of comments at some places

      ✘ This is your job to complain, not mine.



      Give feedback on any of two languages.









      share|improve this question










      share|improve this question




      share|improve this question









      asked Jun 6 at 13:12









      Luke

      284210




      284210

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "196"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f195958%2fc-implementation-of-monte-carlo-tree-search-with-python-wrapper%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f195958%2fc-implementation-of-monte-carlo-tree-search-with-python-wrapper%23new-answer', 'question_page');

          );

          Post as a guest













































































          Popular posts from this blog

          Chat program with C++ and SFML

          Function to Return a JSON Like Objects Using VBA Collections and Arrays

          Will my employers contract hold up in court?