Project Euler Problem 31 (Coin Sum)

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
1
down vote

favorite












I just finished Project Euler 31: Coin sums, which asks how many ways there are to make £2 using British coins (1p, 2p, 5p, 10p, 20p, 50p, £1, and £2).



When I compared my code and the problem review's algorithms, I found that my code was faster than theirs. Both of them use dynamic programming, but for some unknown reasons, my code meets the recursive limits.



Project Euler Reference




def problem_31_dynamic_programming(money, coin_index):
count = 0
if coin_index <= 0:
return 1
m = money
if memoiz_list[m][coin_index] > 0:
return memoiz_list[m][coin_index]
while money >= 0:
count += problem_31_dynamic_programming(money, coin_index - 1)
money -= coin_list[coin_index]
memoiz_list[m][coin_index] = count
return count



My solution



import time

def problem_31(money, coin_index): #My solution (cannot solve big number such as 10000)
if coin_index < 0:
return 0
if coin_index == 0 or money == 0:
return 1
if memoiz_list[money][coin_index] > 0:
return memoiz_list[money][coin_index]
if coin_list[coin_index] > money:
return problem_31(money, coin_index - 1)
memoiz_list[money][coin_index] = problem_31(money, coin_index-1)+
problem_31(money-coin_list[coin_index],coin_index)
return memoiz_list[money][coin_index]


start = time.time()
coin_list = [1,2,5,10,20,50,100,200]
memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
print(problem_31_dynamic_programming(200,7)) #Replace problem_31_dynamic_programming() with problem_31
elapsed = time.time() - start
print("Result found in %f seconds"%(elapsed))






share|improve this question



























    up vote
    1
    down vote

    favorite












    I just finished Project Euler 31: Coin sums, which asks how many ways there are to make £2 using British coins (1p, 2p, 5p, 10p, 20p, 50p, £1, and £2).



    When I compared my code and the problem review's algorithms, I found that my code was faster than theirs. Both of them use dynamic programming, but for some unknown reasons, my code meets the recursive limits.



    Project Euler Reference




    def problem_31_dynamic_programming(money, coin_index):
    count = 0
    if coin_index <= 0:
    return 1
    m = money
    if memoiz_list[m][coin_index] > 0:
    return memoiz_list[m][coin_index]
    while money >= 0:
    count += problem_31_dynamic_programming(money, coin_index - 1)
    money -= coin_list[coin_index]
    memoiz_list[m][coin_index] = count
    return count



    My solution



    import time

    def problem_31(money, coin_index): #My solution (cannot solve big number such as 10000)
    if coin_index < 0:
    return 0
    if coin_index == 0 or money == 0:
    return 1
    if memoiz_list[money][coin_index] > 0:
    return memoiz_list[money][coin_index]
    if coin_list[coin_index] > money:
    return problem_31(money, coin_index - 1)
    memoiz_list[money][coin_index] = problem_31(money, coin_index-1)+
    problem_31(money-coin_list[coin_index],coin_index)
    return memoiz_list[money][coin_index]


    start = time.time()
    coin_list = [1,2,5,10,20,50,100,200]
    memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
    print(problem_31_dynamic_programming(200,7)) #Replace problem_31_dynamic_programming() with problem_31
    elapsed = time.time() - start
    print("Result found in %f seconds"%(elapsed))






    share|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I just finished Project Euler 31: Coin sums, which asks how many ways there are to make £2 using British coins (1p, 2p, 5p, 10p, 20p, 50p, £1, and £2).



      When I compared my code and the problem review's algorithms, I found that my code was faster than theirs. Both of them use dynamic programming, but for some unknown reasons, my code meets the recursive limits.



      Project Euler Reference




      def problem_31_dynamic_programming(money, coin_index):
      count = 0
      if coin_index <= 0:
      return 1
      m = money
      if memoiz_list[m][coin_index] > 0:
      return memoiz_list[m][coin_index]
      while money >= 0:
      count += problem_31_dynamic_programming(money, coin_index - 1)
      money -= coin_list[coin_index]
      memoiz_list[m][coin_index] = count
      return count



      My solution



      import time

      def problem_31(money, coin_index): #My solution (cannot solve big number such as 10000)
      if coin_index < 0:
      return 0
      if coin_index == 0 or money == 0:
      return 1
      if memoiz_list[money][coin_index] > 0:
      return memoiz_list[money][coin_index]
      if coin_list[coin_index] > money:
      return problem_31(money, coin_index - 1)
      memoiz_list[money][coin_index] = problem_31(money, coin_index-1)+
      problem_31(money-coin_list[coin_index],coin_index)
      return memoiz_list[money][coin_index]


      start = time.time()
      coin_list = [1,2,5,10,20,50,100,200]
      memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
      print(problem_31_dynamic_programming(200,7)) #Replace problem_31_dynamic_programming() with problem_31
      elapsed = time.time() - start
      print("Result found in %f seconds"%(elapsed))






      share|improve this question













      I just finished Project Euler 31: Coin sums, which asks how many ways there are to make £2 using British coins (1p, 2p, 5p, 10p, 20p, 50p, £1, and £2).



      When I compared my code and the problem review's algorithms, I found that my code was faster than theirs. Both of them use dynamic programming, but for some unknown reasons, my code meets the recursive limits.



      Project Euler Reference




      def problem_31_dynamic_programming(money, coin_index):
      count = 0
      if coin_index <= 0:
      return 1
      m = money
      if memoiz_list[m][coin_index] > 0:
      return memoiz_list[m][coin_index]
      while money >= 0:
      count += problem_31_dynamic_programming(money, coin_index - 1)
      money -= coin_list[coin_index]
      memoiz_list[m][coin_index] = count
      return count



      My solution



      import time

      def problem_31(money, coin_index): #My solution (cannot solve big number such as 10000)
      if coin_index < 0:
      return 0
      if coin_index == 0 or money == 0:
      return 1
      if memoiz_list[money][coin_index] > 0:
      return memoiz_list[money][coin_index]
      if coin_list[coin_index] > money:
      return problem_31(money, coin_index - 1)
      memoiz_list[money][coin_index] = problem_31(money, coin_index-1)+
      problem_31(money-coin_list[coin_index],coin_index)
      return memoiz_list[money][coin_index]


      start = time.time()
      coin_list = [1,2,5,10,20,50,100,200]
      memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
      print(problem_31_dynamic_programming(200,7)) #Replace problem_31_dynamic_programming() with problem_31
      elapsed = time.time() - start
      print("Result found in %f seconds"%(elapsed))








      share|improve this question












      share|improve this question




      share|improve this question








      edited Feb 9 at 21:39









      200_success

      123k14143401




      123k14143401









      asked Feb 9 at 3:59









      Quang Truong

      82




      82




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Depth analysis



          A bit of tweaking of your code leads to results about the maximum function call depth:



          def problem_31_a(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          count = 0
          if coin_index <= 0:
          return 1
          m = money
          if memoiz_list[m][coin_index] > 0:
          return memoiz_list[m][coin_index]
          while money >= 0:
          count += problem_31_a(money, coin_index - 1, depth=depth+1)
          money -= coin_list[coin_index]
          memoiz_list[m][coin_index] = count
          return count


          def problem_31_b(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          if memoiz_list[money][coin_index] > 0:
          return memoiz_list[money][coin_index]
          if coin_list[coin_index] > money:
          return problem_31_b(money, coin_index - 1, depth=depth+1)
          memoiz_list[money][coin_index] = problem_31_b(money, coin_index-1, depth=depth+1)+
          problem_31_b(money-coin_list[coin_index],coin_index, depth=depth+1)
          return memoiz_list[money][coin_index]


          coin_list = [1,2,5,10,20,50,100,200]

          for func in [problem_31_a, problem_31_b]:
          glob_depth = 0
          start = time.time()
          memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
          print(func(200,7))
          elapsed = time.time() - start
          print("Result found in %f seconds - depth:%d" % (elapsed, glob_depth))


          And indeed, we get:



          73682
          Result found in 0.003184 seconds - depth:8
          73682
          Result found in 0.000919 seconds - depth:107


          Your code appears to be faster but also goes much deeper in the function calls. If you exceed the system limits, you could update sys.setrecursionlimit. However, it could be a good idea to try to fix your code.



          You could write a solution that doesn't perform any recursive calls: instead of trying to solve your problems by solving smaller and smaller problems and saving the solution as you go, you could simply update all the problems from the smallest to the biggest you need.



          For instance, you could write:



          def problem_31_c(money, unused):
          nb_ways = [1] + [0] * money
          for c in coin_list:
          for v in range(money + 1 - c):
          nb_ways[v + c] += nb_ways[v]
          return nb_ways[-1]


          Actual code review



          For both functions, it could be a good idea to make it obvious that we have the following pattern:



          if value_from_memoiz_list:
          return value_from_memoiz_list
          compute_value
          store_value_in_memoiz_list
          return value


          In problem_31 for instance, we can see that a situation leads to a result being computed and returned without being store in the memoized list. Also, that case could be handled with less duplicated logic:



          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)


          Finally, your strategy reusing computed value assumes that 0 is a non-existing result. You could use None for this. In your case it doesn't make a difference because no expensive computation leads to 0 but it makes the intent of your code clearer.



          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          memoiz_list[money][coin_index] = count
          return count


          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          memoiz_list[money][coin_index] = count
          return count


          Also, you could use a decorator to implement your memoization strategy.



          Reusing a generic decorator from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize , you could write:



          coin_list = [1,2,5,10,20,50,100,200]

          class memoized(object):
          '''Decorator. Caches a function's return value each time it is called.
          If called later with the same arguments, the cached value is returned
          (not reevaluated).
          '''
          def __init__(self, func):
          self.func = func
          self.memoiz_list = [[None]*len(coin_list) for i in range(201)]
          def __call__(self, money, coin_index):
          try:
          memo_value = self.memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          except IndexError:
          pass
          ret = self.func(money, coin_index)
          try:
          self.memoiz_list[money][coin_index] = ret
          except IndexError:
          pass
          return ret
          def __repr__(self):
          '''Return the function's docstring.'''
          return self.func.__doc__
          def __get__(self, obj, objtype):
          '''Support instance methods.'''
          return functools.partial(self.__call__, obj)

          @memoized
          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          return count


          @memoized
          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          return count





          share|improve this answer























          • memoized = functools.lru_cache(maxsize=None)
            – Gareth Rees
            Feb 10 at 16:27










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "196"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f187150%2fproject-euler-problem-31-coin-sum%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Depth analysis



          A bit of tweaking of your code leads to results about the maximum function call depth:



          def problem_31_a(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          count = 0
          if coin_index <= 0:
          return 1
          m = money
          if memoiz_list[m][coin_index] > 0:
          return memoiz_list[m][coin_index]
          while money >= 0:
          count += problem_31_a(money, coin_index - 1, depth=depth+1)
          money -= coin_list[coin_index]
          memoiz_list[m][coin_index] = count
          return count


          def problem_31_b(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          if memoiz_list[money][coin_index] > 0:
          return memoiz_list[money][coin_index]
          if coin_list[coin_index] > money:
          return problem_31_b(money, coin_index - 1, depth=depth+1)
          memoiz_list[money][coin_index] = problem_31_b(money, coin_index-1, depth=depth+1)+
          problem_31_b(money-coin_list[coin_index],coin_index, depth=depth+1)
          return memoiz_list[money][coin_index]


          coin_list = [1,2,5,10,20,50,100,200]

          for func in [problem_31_a, problem_31_b]:
          glob_depth = 0
          start = time.time()
          memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
          print(func(200,7))
          elapsed = time.time() - start
          print("Result found in %f seconds - depth:%d" % (elapsed, glob_depth))


          And indeed, we get:



          73682
          Result found in 0.003184 seconds - depth:8
          73682
          Result found in 0.000919 seconds - depth:107


          Your code appears to be faster but also goes much deeper in the function calls. If you exceed the system limits, you could update sys.setrecursionlimit. However, it could be a good idea to try to fix your code.



          You could write a solution that doesn't perform any recursive calls: instead of trying to solve your problems by solving smaller and smaller problems and saving the solution as you go, you could simply update all the problems from the smallest to the biggest you need.



          For instance, you could write:



          def problem_31_c(money, unused):
          nb_ways = [1] + [0] * money
          for c in coin_list:
          for v in range(money + 1 - c):
          nb_ways[v + c] += nb_ways[v]
          return nb_ways[-1]


          Actual code review



          For both functions, it could be a good idea to make it obvious that we have the following pattern:



          if value_from_memoiz_list:
          return value_from_memoiz_list
          compute_value
          store_value_in_memoiz_list
          return value


          In problem_31 for instance, we can see that a situation leads to a result being computed and returned without being store in the memoized list. Also, that case could be handled with less duplicated logic:



          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)


          Finally, your strategy reusing computed value assumes that 0 is a non-existing result. You could use None for this. In your case it doesn't make a difference because no expensive computation leads to 0 but it makes the intent of your code clearer.



          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          memoiz_list[money][coin_index] = count
          return count


          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          memoiz_list[money][coin_index] = count
          return count


          Also, you could use a decorator to implement your memoization strategy.



          Reusing a generic decorator from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize , you could write:



          coin_list = [1,2,5,10,20,50,100,200]

          class memoized(object):
          '''Decorator. Caches a function's return value each time it is called.
          If called later with the same arguments, the cached value is returned
          (not reevaluated).
          '''
          def __init__(self, func):
          self.func = func
          self.memoiz_list = [[None]*len(coin_list) for i in range(201)]
          def __call__(self, money, coin_index):
          try:
          memo_value = self.memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          except IndexError:
          pass
          ret = self.func(money, coin_index)
          try:
          self.memoiz_list[money][coin_index] = ret
          except IndexError:
          pass
          return ret
          def __repr__(self):
          '''Return the function's docstring.'''
          return self.func.__doc__
          def __get__(self, obj, objtype):
          '''Support instance methods.'''
          return functools.partial(self.__call__, obj)

          @memoized
          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          return count


          @memoized
          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          return count





          share|improve this answer























          • memoized = functools.lru_cache(maxsize=None)
            – Gareth Rees
            Feb 10 at 16:27














          up vote
          1
          down vote



          accepted










          Depth analysis



          A bit of tweaking of your code leads to results about the maximum function call depth:



          def problem_31_a(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          count = 0
          if coin_index <= 0:
          return 1
          m = money
          if memoiz_list[m][coin_index] > 0:
          return memoiz_list[m][coin_index]
          while money >= 0:
          count += problem_31_a(money, coin_index - 1, depth=depth+1)
          money -= coin_list[coin_index]
          memoiz_list[m][coin_index] = count
          return count


          def problem_31_b(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          if memoiz_list[money][coin_index] > 0:
          return memoiz_list[money][coin_index]
          if coin_list[coin_index] > money:
          return problem_31_b(money, coin_index - 1, depth=depth+1)
          memoiz_list[money][coin_index] = problem_31_b(money, coin_index-1, depth=depth+1)+
          problem_31_b(money-coin_list[coin_index],coin_index, depth=depth+1)
          return memoiz_list[money][coin_index]


          coin_list = [1,2,5,10,20,50,100,200]

          for func in [problem_31_a, problem_31_b]:
          glob_depth = 0
          start = time.time()
          memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
          print(func(200,7))
          elapsed = time.time() - start
          print("Result found in %f seconds - depth:%d" % (elapsed, glob_depth))


          And indeed, we get:



          73682
          Result found in 0.003184 seconds - depth:8
          73682
          Result found in 0.000919 seconds - depth:107


          Your code appears to be faster but also goes much deeper in the function calls. If you exceed the system limits, you could update sys.setrecursionlimit. However, it could be a good idea to try to fix your code.



          You could write a solution that doesn't perform any recursive calls: instead of trying to solve your problems by solving smaller and smaller problems and saving the solution as you go, you could simply update all the problems from the smallest to the biggest you need.



          For instance, you could write:



          def problem_31_c(money, unused):
          nb_ways = [1] + [0] * money
          for c in coin_list:
          for v in range(money + 1 - c):
          nb_ways[v + c] += nb_ways[v]
          return nb_ways[-1]


          Actual code review



          For both functions, it could be a good idea to make it obvious that we have the following pattern:



          if value_from_memoiz_list:
          return value_from_memoiz_list
          compute_value
          store_value_in_memoiz_list
          return value


          In problem_31 for instance, we can see that a situation leads to a result being computed and returned without being store in the memoized list. Also, that case could be handled with less duplicated logic:



          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)


          Finally, your strategy reusing computed value assumes that 0 is a non-existing result. You could use None for this. In your case it doesn't make a difference because no expensive computation leads to 0 but it makes the intent of your code clearer.



          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          memoiz_list[money][coin_index] = count
          return count


          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          memoiz_list[money][coin_index] = count
          return count


          Also, you could use a decorator to implement your memoization strategy.



          Reusing a generic decorator from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize , you could write:



          coin_list = [1,2,5,10,20,50,100,200]

          class memoized(object):
          '''Decorator. Caches a function's return value each time it is called.
          If called later with the same arguments, the cached value is returned
          (not reevaluated).
          '''
          def __init__(self, func):
          self.func = func
          self.memoiz_list = [[None]*len(coin_list) for i in range(201)]
          def __call__(self, money, coin_index):
          try:
          memo_value = self.memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          except IndexError:
          pass
          ret = self.func(money, coin_index)
          try:
          self.memoiz_list[money][coin_index] = ret
          except IndexError:
          pass
          return ret
          def __repr__(self):
          '''Return the function's docstring.'''
          return self.func.__doc__
          def __get__(self, obj, objtype):
          '''Support instance methods.'''
          return functools.partial(self.__call__, obj)

          @memoized
          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          return count


          @memoized
          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          return count





          share|improve this answer























          • memoized = functools.lru_cache(maxsize=None)
            – Gareth Rees
            Feb 10 at 16:27












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Depth analysis



          A bit of tweaking of your code leads to results about the maximum function call depth:



          def problem_31_a(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          count = 0
          if coin_index <= 0:
          return 1
          m = money
          if memoiz_list[m][coin_index] > 0:
          return memoiz_list[m][coin_index]
          while money >= 0:
          count += problem_31_a(money, coin_index - 1, depth=depth+1)
          money -= coin_list[coin_index]
          memoiz_list[m][coin_index] = count
          return count


          def problem_31_b(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          if memoiz_list[money][coin_index] > 0:
          return memoiz_list[money][coin_index]
          if coin_list[coin_index] > money:
          return problem_31_b(money, coin_index - 1, depth=depth+1)
          memoiz_list[money][coin_index] = problem_31_b(money, coin_index-1, depth=depth+1)+
          problem_31_b(money-coin_list[coin_index],coin_index, depth=depth+1)
          return memoiz_list[money][coin_index]


          coin_list = [1,2,5,10,20,50,100,200]

          for func in [problem_31_a, problem_31_b]:
          glob_depth = 0
          start = time.time()
          memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
          print(func(200,7))
          elapsed = time.time() - start
          print("Result found in %f seconds - depth:%d" % (elapsed, glob_depth))


          And indeed, we get:



          73682
          Result found in 0.003184 seconds - depth:8
          73682
          Result found in 0.000919 seconds - depth:107


          Your code appears to be faster but also goes much deeper in the function calls. If you exceed the system limits, you could update sys.setrecursionlimit. However, it could be a good idea to try to fix your code.



          You could write a solution that doesn't perform any recursive calls: instead of trying to solve your problems by solving smaller and smaller problems and saving the solution as you go, you could simply update all the problems from the smallest to the biggest you need.



          For instance, you could write:



          def problem_31_c(money, unused):
          nb_ways = [1] + [0] * money
          for c in coin_list:
          for v in range(money + 1 - c):
          nb_ways[v + c] += nb_ways[v]
          return nb_ways[-1]


          Actual code review



          For both functions, it could be a good idea to make it obvious that we have the following pattern:



          if value_from_memoiz_list:
          return value_from_memoiz_list
          compute_value
          store_value_in_memoiz_list
          return value


          In problem_31 for instance, we can see that a situation leads to a result being computed and returned without being store in the memoized list. Also, that case could be handled with less duplicated logic:



          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)


          Finally, your strategy reusing computed value assumes that 0 is a non-existing result. You could use None for this. In your case it doesn't make a difference because no expensive computation leads to 0 but it makes the intent of your code clearer.



          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          memoiz_list[money][coin_index] = count
          return count


          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          memoiz_list[money][coin_index] = count
          return count


          Also, you could use a decorator to implement your memoization strategy.



          Reusing a generic decorator from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize , you could write:



          coin_list = [1,2,5,10,20,50,100,200]

          class memoized(object):
          '''Decorator. Caches a function's return value each time it is called.
          If called later with the same arguments, the cached value is returned
          (not reevaluated).
          '''
          def __init__(self, func):
          self.func = func
          self.memoiz_list = [[None]*len(coin_list) for i in range(201)]
          def __call__(self, money, coin_index):
          try:
          memo_value = self.memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          except IndexError:
          pass
          ret = self.func(money, coin_index)
          try:
          self.memoiz_list[money][coin_index] = ret
          except IndexError:
          pass
          return ret
          def __repr__(self):
          '''Return the function's docstring.'''
          return self.func.__doc__
          def __get__(self, obj, objtype):
          '''Support instance methods.'''
          return functools.partial(self.__call__, obj)

          @memoized
          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          return count


          @memoized
          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          return count





          share|improve this answer















          Depth analysis



          A bit of tweaking of your code leads to results about the maximum function call depth:



          def problem_31_a(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          count = 0
          if coin_index <= 0:
          return 1
          m = money
          if memoiz_list[m][coin_index] > 0:
          return memoiz_list[m][coin_index]
          while money >= 0:
          count += problem_31_a(money, coin_index - 1, depth=depth+1)
          money -= coin_list[coin_index]
          memoiz_list[m][coin_index] = count
          return count


          def problem_31_b(money, coin_index, depth=1):
          global glob_depth
          glob_depth = max(glob_depth, depth)
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          if memoiz_list[money][coin_index] > 0:
          return memoiz_list[money][coin_index]
          if coin_list[coin_index] > money:
          return problem_31_b(money, coin_index - 1, depth=depth+1)
          memoiz_list[money][coin_index] = problem_31_b(money, coin_index-1, depth=depth+1)+
          problem_31_b(money-coin_list[coin_index],coin_index, depth=depth+1)
          return memoiz_list[money][coin_index]


          coin_list = [1,2,5,10,20,50,100,200]

          for func in [problem_31_a, problem_31_b]:
          glob_depth = 0
          start = time.time()
          memoiz_list = [[0,0,0,0,0,0,0,0] for i in range(201)]
          print(func(200,7))
          elapsed = time.time() - start
          print("Result found in %f seconds - depth:%d" % (elapsed, glob_depth))


          And indeed, we get:



          73682
          Result found in 0.003184 seconds - depth:8
          73682
          Result found in 0.000919 seconds - depth:107


          Your code appears to be faster but also goes much deeper in the function calls. If you exceed the system limits, you could update sys.setrecursionlimit. However, it could be a good idea to try to fix your code.



          You could write a solution that doesn't perform any recursive calls: instead of trying to solve your problems by solving smaller and smaller problems and saving the solution as you go, you could simply update all the problems from the smallest to the biggest you need.



          For instance, you could write:



          def problem_31_c(money, unused):
          nb_ways = [1] + [0] * money
          for c in coin_list:
          for v in range(money + 1 - c):
          nb_ways[v + c] += nb_ways[v]
          return nb_ways[-1]


          Actual code review



          For both functions, it could be a good idea to make it obvious that we have the following pattern:



          if value_from_memoiz_list:
          return value_from_memoiz_list
          compute_value
          store_value_in_memoiz_list
          return value


          In problem_31 for instance, we can see that a situation leads to a result being computed and returned without being store in the memoized list. Also, that case could be handled with less duplicated logic:



          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)


          Finally, your strategy reusing computed value assumes that 0 is a non-existing result. You could use None for this. In your case it doesn't make a difference because no expensive computation leads to 0 but it makes the intent of your code clearer.



          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          memoiz_list[money][coin_index] = count
          return count


          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          memo_value = memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          memoiz_list[money][coin_index] = count
          return count


          Also, you could use a decorator to implement your memoization strategy.



          Reusing a generic decorator from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize , you could write:



          coin_list = [1,2,5,10,20,50,100,200]

          class memoized(object):
          '''Decorator. Caches a function's return value each time it is called.
          If called later with the same arguments, the cached value is returned
          (not reevaluated).
          '''
          def __init__(self, func):
          self.func = func
          self.memoiz_list = [[None]*len(coin_list) for i in range(201)]
          def __call__(self, money, coin_index):
          try:
          memo_value = self.memoiz_list[money][coin_index]
          if memo_value is not None:
          return memo_value
          except IndexError:
          pass
          ret = self.func(money, coin_index)
          try:
          self.memoiz_list[money][coin_index] = ret
          except IndexError:
          pass
          return ret
          def __repr__(self):
          '''Return the function's docstring.'''
          return self.func.__doc__
          def __get__(self, obj, objtype):
          '''Support instance methods.'''
          return functools.partial(self.__call__, obj)

          @memoized
          def problem_31_a(money, coin_index):
          if coin_index <= 0:
          return 1
          money_rem = money
          count = 0
          while money_rem >= 0:
          count += problem_31_a(money_rem, coin_index - 1)
          money_rem -= coin_list[coin_index]
          return count


          @memoized
          def problem_31_b(money, coin_index):
          if coin_index < 0:
          return 0
          if coin_index == 0 or money == 0:
          return 1
          count = problem_31_b(money, coin_index-1)
          coin_value = coin_list[coin_index]
          if coin_value <= money:
          count += problem_31_b(money-coin_value,coin_index)
          return count






          share|improve this answer















          share|improve this answer



          share|improve this answer








          edited Feb 10 at 9:43


























          answered Feb 9 at 14:59









          Josay

          23.8k13580




          23.8k13580











          • memoized = functools.lru_cache(maxsize=None)
            – Gareth Rees
            Feb 10 at 16:27
















          • memoized = functools.lru_cache(maxsize=None)
            – Gareth Rees
            Feb 10 at 16:27















          memoized = functools.lru_cache(maxsize=None)
          – Gareth Rees
          Feb 10 at 16:27




          memoized = functools.lru_cache(maxsize=None)
          – Gareth Rees
          Feb 10 at 16:27












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f187150%2fproject-euler-problem-31-coin-sum%23new-answer', 'question_page');

          );

          Post as a guest













































































          Popular posts from this blog

          Chat program with C++ and SFML

          Function to Return a JSON Like Objects Using VBA Collections and Arrays

          Will my employers contract hold up in court?