Equation parser + solver

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
0
down vote

favorite












Here is an equation parser that I just wrote. My focus was on readability and the prospect of adding new features in the future. Since I like a somewhat functional style, I also gave type annotations, especially for the more complex cases. I do know that this is not purely functional, and that was by no means the aim of this program. I did however keep the top-level functions completely pure, or at least I hope so.



"use strict";

Object.defineProperties(Array.prototype,
head: get() return this[0] ,
tail: get() return this.slice(1, this.length) ,
last: get() return this[this.length - 1] ,
init: get() return this.slice(0, this.length - 1) ,
)

const id = x => x
const pipe = (...fns) => arg => fns.reduce((stack, f) => f(stack), arg)

const FN =
/** trigonometric functions **/
sin: f => Math.sin(f),
cos: f => Math.cos(f),
tan: f => Math.tan(f),
sinh: f => Math.sinh(f),
cosh: f => Math.cosh(f),
tanh: f => Math.tanh(f),
asin: f => Math.asin(f),
acos: f => Math.acos(f),
atan: f => Math.atan(f),
asinh: f => Math.asinh(f),
acosh: f => Math.acosh(f),
atanh: f => Math.atanh(f),

deg: f => f * 180/Math.PI,
rad: f => f * Math.PI/180,

/** exponentiation etc. **/
exp: f => Math.exp(f),
ln: f => Math.log(f),
lg: f => Math.log10(f),
sqrt: f => Math.sqrt(f),

/** misc **/
fac: i =>
if (i !== Math.trunc(i)) return undefined
const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
return __fac(i)
,



const CONST =
e: Math.E,
pi: Math.PI,



// --------------------------- equation linter ------------------------------ //

// :: String -> String
const lintEqn = s =>

const startWithPlus = s => s.replace(/($


// ------------------------------ main logic -------------------------------- //

// :: String -> StkTree
// StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
// StkBranch = Num | StkTree
const buildStackTree = s =>

const isFloat = s => /^ *-?d+(.d+)?([eE][+-]?d+)? *$/.test(s)
const isConst = s => CONST.hasOwnProperty(s)
const isDeg = s => /^d+(.d+)?°$/.test(s)
const isOp = c => /^[+-*/^]$/.test(c)
const isFn = s => FN.hasOwnProperty(s)

const freshStack = () => (
op: undefined,
num: undefined,
fns: [id],
)

const acc =
tree: [freshStack()],
targets: ,

acc.targets.push(acc.tree)

return s.split(' ').reduce((tree, targets, tkn) =>

const tgtTree = targets.last

if (tgtTree.last.num !== undefined)
tgtTree.push(freshStack())

const tgtStk = tgtTree.last

if (isOp(tkn))
if (!tgtStk.op)
tgtStk.op = tkn
else
throw new Error(`Redundant operator: $tkn`)


else if (isFloat(tkn))
tgtStk.num = (parseFloat(tkn))

else if (isFn(tkn))
tgtStk.fns.unshift(FN[tkn])

else if (isConst(tkn))
tgtStk.num = CONST[tkn]

else if (isDeg(tkn))
tgtStk.num = CONST.pi * parseFloat(tkn) / 180


/** increase Nesting **/
else if (tkn === '(')

const newBranch = [freshStack()]
tgtStk.num = newBranch
targets.push(newBranch)

/** decrease Nesting **/
else if (tkn === ')')

if (tgtStk.op else
throw new Error(`Unparsable token: $tkn`)


return tree, targets
, acc).tree




// :: StkTree -> EqnTree
// StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
// StkBranch = Num | StkTree
// EqnTree = [[{b:EqnBranch, e:EqnBranch, efn:(Num -> Num), bfn:(Num -> Num)]]
// EqnBranch = Num | EqnTree
const buildEqnTree = stackTree =>

return stackTree.reduce((eqnTree, stk) =>

const op, fns = stk
const fullfn = pipe(...fns)
const num = typeof stk.num === 'number' ? stk.num : buildEqnTree(stk.num)

if (op === '+')
eqnTree.push([ b: num, e: 1, bfn: fullfn, efn: id ])

else if (op === '-')
eqnTree.push([ b: -num, e: 1, bfn: fullfn, efn: id ])

else if (op === '*')
eqnTree.last.push( b: num, e: 1, bfn: fullfn, efn: id )

else if (op === '/')
eqnTree.last.push( b: 1 / num, e: 1, bfn: fullfn, efn: id )

else if (op === '^')
eqnTree.last.last.e = num
eqnTree.last.last.efn = fullfn

else
throw new Error(`Unknown operator: $op`)


return eqnTree
, )


// spw = sum of product of powers
const evaluate = spw =>

if (!(spw instanceof Object)) return spw

return spw.reduce((s, pw) =>

return s + pw.reduce((p, w) =>

const b = typeof w.b === 'number' ? w.b : evaluate(w.b)
const e = typeof w.e === 'number' ? w.e : evaluate(w.e)
const bfn, efn = w

return p * (bfn(b) ** efn(e))
, 1)

, 0)
;


// :: Num -> Num
const precisionRound = (f, p) =>
const factor = 10 ** p
return Math.round(f * factor) / factor


// :: String -> Num
const parse = s =>

if (/[!"'§$&?,;:#]/.test(s))
throw new Error('You may only enter numbers, operators, or functions')


const v = pipe(
lintEqn,
buildStackTree,
buildEqnTree,
evaluate,
)(s)
return typeof v === 'number' ? v : NaN
;


I have also put emphasis on making this accept just about any string a user might throw at it. So these are the tests my parser will satisfy as of now:



const test = (string, expectation) => 
const approx = f => precisionRound(f, 15)
const result = parse(string)
console.log(approx(result) === approx(expectation))


test('1+2',3)
test('1+2+3+4',10)
test('2*3',6)
test('2*3*4*5',120)
test('1+2*3+4',11)
test('1*2+3*4',14)
test('2^3',8)
test('2^3 + 1',9)
test('2^3 * 3',24)
test('1 + 2^3 * 3',25)
test('3^2 + 4*2',17)
test('12 - 3*4',0)
test('12 * 3/4',9)
test('14/7 + 6',8)

test('sin 0',0)
test('sin 0 +1',1)
test('cos 0',1)
test('cos 90°',0)
test('cos 180°',-1)
test('cos 0°',1)
test('ln e',1)
test('1^ln e',1)
test('e^1',Math.E)
test('e^3',Math.E ** 3)
test('3^e',3 ** Math.E)
test('e^e',Math.E ** Math.E)
test('e^ln e',Math.E)
test('ln exp 1',1)
test('lg 1000',3)

test('sin exp 3.721', Math.sin(Math.exp(3.721)))
test('exp sin 3.721', Math.exp(Math.sin(3.721)))
test('4^sin 3.721', 4 ** (Math.sin(3.721)))
test('sin 1 + exp 3.721', Math.sin(1) + Math.exp(3.721))

test(' --4',4)
test('-- 4',4)
test('- - 4',4)
test(' - - 4',4)
test(' -- 4',4)
test('- -4',4)
test('--4',4)
test(' -4',-4)
test('-4',-4)
test(' -4',-4)
test('- 4',-4)

test('1+2', 3)
test('1+2*3+4', 11)
test('4+(1+2)*(3+4)', 25)
test('2^(3*(1+2))', 512)


My main concerns are readability/maintainability of the code. I do not know about performance optimization yet, so comments on that would be interesting as well. It is my first JS project, so any form of feedback is highly appreciated.







share|improve this question



























    up vote
    0
    down vote

    favorite












    Here is an equation parser that I just wrote. My focus was on readability and the prospect of adding new features in the future. Since I like a somewhat functional style, I also gave type annotations, especially for the more complex cases. I do know that this is not purely functional, and that was by no means the aim of this program. I did however keep the top-level functions completely pure, or at least I hope so.



    "use strict";

    Object.defineProperties(Array.prototype,
    head: get() return this[0] ,
    tail: get() return this.slice(1, this.length) ,
    last: get() return this[this.length - 1] ,
    init: get() return this.slice(0, this.length - 1) ,
    )

    const id = x => x
    const pipe = (...fns) => arg => fns.reduce((stack, f) => f(stack), arg)

    const FN =
    /** trigonometric functions **/
    sin: f => Math.sin(f),
    cos: f => Math.cos(f),
    tan: f => Math.tan(f),
    sinh: f => Math.sinh(f),
    cosh: f => Math.cosh(f),
    tanh: f => Math.tanh(f),
    asin: f => Math.asin(f),
    acos: f => Math.acos(f),
    atan: f => Math.atan(f),
    asinh: f => Math.asinh(f),
    acosh: f => Math.acosh(f),
    atanh: f => Math.atanh(f),

    deg: f => f * 180/Math.PI,
    rad: f => f * Math.PI/180,

    /** exponentiation etc. **/
    exp: f => Math.exp(f),
    ln: f => Math.log(f),
    lg: f => Math.log10(f),
    sqrt: f => Math.sqrt(f),

    /** misc **/
    fac: i =>
    if (i !== Math.trunc(i)) return undefined
    const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
    return __fac(i)
    ,



    const CONST =
    e: Math.E,
    pi: Math.PI,



    // --------------------------- equation linter ------------------------------ //

    // :: String -> String
    const lintEqn = s =>

    const startWithPlus = s => s.replace(/($


    // ------------------------------ main logic -------------------------------- //

    // :: String -> StkTree
    // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
    // StkBranch = Num | StkTree
    const buildStackTree = s =>

    const isFloat = s => /^ *-?d+(.d+)?([eE][+-]?d+)? *$/.test(s)
    const isConst = s => CONST.hasOwnProperty(s)
    const isDeg = s => /^d+(.d+)?°$/.test(s)
    const isOp = c => /^[+-*/^]$/.test(c)
    const isFn = s => FN.hasOwnProperty(s)

    const freshStack = () => (
    op: undefined,
    num: undefined,
    fns: [id],
    )

    const acc =
    tree: [freshStack()],
    targets: ,

    acc.targets.push(acc.tree)

    return s.split(' ').reduce((tree, targets, tkn) =>

    const tgtTree = targets.last

    if (tgtTree.last.num !== undefined)
    tgtTree.push(freshStack())

    const tgtStk = tgtTree.last

    if (isOp(tkn))
    if (!tgtStk.op)
    tgtStk.op = tkn
    else
    throw new Error(`Redundant operator: $tkn`)


    else if (isFloat(tkn))
    tgtStk.num = (parseFloat(tkn))

    else if (isFn(tkn))
    tgtStk.fns.unshift(FN[tkn])

    else if (isConst(tkn))
    tgtStk.num = CONST[tkn]

    else if (isDeg(tkn))
    tgtStk.num = CONST.pi * parseFloat(tkn) / 180


    /** increase Nesting **/
    else if (tkn === '(')

    const newBranch = [freshStack()]
    tgtStk.num = newBranch
    targets.push(newBranch)

    /** decrease Nesting **/
    else if (tkn === ')')

    if (tgtStk.op else
    throw new Error(`Unparsable token: $tkn`)


    return tree, targets
    , acc).tree




    // :: StkTree -> EqnTree
    // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
    // StkBranch = Num | StkTree
    // EqnTree = [[{b:EqnBranch, e:EqnBranch, efn:(Num -> Num), bfn:(Num -> Num)]]
    // EqnBranch = Num | EqnTree
    const buildEqnTree = stackTree =>

    return stackTree.reduce((eqnTree, stk) =>

    const op, fns = stk
    const fullfn = pipe(...fns)
    const num = typeof stk.num === 'number' ? stk.num : buildEqnTree(stk.num)

    if (op === '+')
    eqnTree.push([ b: num, e: 1, bfn: fullfn, efn: id ])

    else if (op === '-')
    eqnTree.push([ b: -num, e: 1, bfn: fullfn, efn: id ])

    else if (op === '*')
    eqnTree.last.push( b: num, e: 1, bfn: fullfn, efn: id )

    else if (op === '/')
    eqnTree.last.push( b: 1 / num, e: 1, bfn: fullfn, efn: id )

    else if (op === '^')
    eqnTree.last.last.e = num
    eqnTree.last.last.efn = fullfn

    else
    throw new Error(`Unknown operator: $op`)


    return eqnTree
    , )


    // spw = sum of product of powers
    const evaluate = spw =>

    if (!(spw instanceof Object)) return spw

    return spw.reduce((s, pw) =>

    return s + pw.reduce((p, w) =>

    const b = typeof w.b === 'number' ? w.b : evaluate(w.b)
    const e = typeof w.e === 'number' ? w.e : evaluate(w.e)
    const bfn, efn = w

    return p * (bfn(b) ** efn(e))
    , 1)

    , 0)
    ;


    // :: Num -> Num
    const precisionRound = (f, p) =>
    const factor = 10 ** p
    return Math.round(f * factor) / factor


    // :: String -> Num
    const parse = s =>

    if (/[!"'§$&?,;:#]/.test(s))
    throw new Error('You may only enter numbers, operators, or functions')


    const v = pipe(
    lintEqn,
    buildStackTree,
    buildEqnTree,
    evaluate,
    )(s)
    return typeof v === 'number' ? v : NaN
    ;


    I have also put emphasis on making this accept just about any string a user might throw at it. So these are the tests my parser will satisfy as of now:



    const test = (string, expectation) => 
    const approx = f => precisionRound(f, 15)
    const result = parse(string)
    console.log(approx(result) === approx(expectation))


    test('1+2',3)
    test('1+2+3+4',10)
    test('2*3',6)
    test('2*3*4*5',120)
    test('1+2*3+4',11)
    test('1*2+3*4',14)
    test('2^3',8)
    test('2^3 + 1',9)
    test('2^3 * 3',24)
    test('1 + 2^3 * 3',25)
    test('3^2 + 4*2',17)
    test('12 - 3*4',0)
    test('12 * 3/4',9)
    test('14/7 + 6',8)

    test('sin 0',0)
    test('sin 0 +1',1)
    test('cos 0',1)
    test('cos 90°',0)
    test('cos 180°',-1)
    test('cos 0°',1)
    test('ln e',1)
    test('1^ln e',1)
    test('e^1',Math.E)
    test('e^3',Math.E ** 3)
    test('3^e',3 ** Math.E)
    test('e^e',Math.E ** Math.E)
    test('e^ln e',Math.E)
    test('ln exp 1',1)
    test('lg 1000',3)

    test('sin exp 3.721', Math.sin(Math.exp(3.721)))
    test('exp sin 3.721', Math.exp(Math.sin(3.721)))
    test('4^sin 3.721', 4 ** (Math.sin(3.721)))
    test('sin 1 + exp 3.721', Math.sin(1) + Math.exp(3.721))

    test(' --4',4)
    test('-- 4',4)
    test('- - 4',4)
    test(' - - 4',4)
    test(' -- 4',4)
    test('- -4',4)
    test('--4',4)
    test(' -4',-4)
    test('-4',-4)
    test(' -4',-4)
    test('- 4',-4)

    test('1+2', 3)
    test('1+2*3+4', 11)
    test('4+(1+2)*(3+4)', 25)
    test('2^(3*(1+2))', 512)


    My main concerns are readability/maintainability of the code. I do not know about performance optimization yet, so comments on that would be interesting as well. It is my first JS project, so any form of feedback is highly appreciated.







    share|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Here is an equation parser that I just wrote. My focus was on readability and the prospect of adding new features in the future. Since I like a somewhat functional style, I also gave type annotations, especially for the more complex cases. I do know that this is not purely functional, and that was by no means the aim of this program. I did however keep the top-level functions completely pure, or at least I hope so.



      "use strict";

      Object.defineProperties(Array.prototype,
      head: get() return this[0] ,
      tail: get() return this.slice(1, this.length) ,
      last: get() return this[this.length - 1] ,
      init: get() return this.slice(0, this.length - 1) ,
      )

      const id = x => x
      const pipe = (...fns) => arg => fns.reduce((stack, f) => f(stack), arg)

      const FN =
      /** trigonometric functions **/
      sin: f => Math.sin(f),
      cos: f => Math.cos(f),
      tan: f => Math.tan(f),
      sinh: f => Math.sinh(f),
      cosh: f => Math.cosh(f),
      tanh: f => Math.tanh(f),
      asin: f => Math.asin(f),
      acos: f => Math.acos(f),
      atan: f => Math.atan(f),
      asinh: f => Math.asinh(f),
      acosh: f => Math.acosh(f),
      atanh: f => Math.atanh(f),

      deg: f => f * 180/Math.PI,
      rad: f => f * Math.PI/180,

      /** exponentiation etc. **/
      exp: f => Math.exp(f),
      ln: f => Math.log(f),
      lg: f => Math.log10(f),
      sqrt: f => Math.sqrt(f),

      /** misc **/
      fac: i =>
      if (i !== Math.trunc(i)) return undefined
      const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
      return __fac(i)
      ,



      const CONST =
      e: Math.E,
      pi: Math.PI,



      // --------------------------- equation linter ------------------------------ //

      // :: String -> String
      const lintEqn = s =>

      const startWithPlus = s => s.replace(/($


      // ------------------------------ main logic -------------------------------- //

      // :: String -> StkTree
      // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
      // StkBranch = Num | StkTree
      const buildStackTree = s =>

      const isFloat = s => /^ *-?d+(.d+)?([eE][+-]?d+)? *$/.test(s)
      const isConst = s => CONST.hasOwnProperty(s)
      const isDeg = s => /^d+(.d+)?°$/.test(s)
      const isOp = c => /^[+-*/^]$/.test(c)
      const isFn = s => FN.hasOwnProperty(s)

      const freshStack = () => (
      op: undefined,
      num: undefined,
      fns: [id],
      )

      const acc =
      tree: [freshStack()],
      targets: ,

      acc.targets.push(acc.tree)

      return s.split(' ').reduce((tree, targets, tkn) =>

      const tgtTree = targets.last

      if (tgtTree.last.num !== undefined)
      tgtTree.push(freshStack())

      const tgtStk = tgtTree.last

      if (isOp(tkn))
      if (!tgtStk.op)
      tgtStk.op = tkn
      else
      throw new Error(`Redundant operator: $tkn`)


      else if (isFloat(tkn))
      tgtStk.num = (parseFloat(tkn))

      else if (isFn(tkn))
      tgtStk.fns.unshift(FN[tkn])

      else if (isConst(tkn))
      tgtStk.num = CONST[tkn]

      else if (isDeg(tkn))
      tgtStk.num = CONST.pi * parseFloat(tkn) / 180


      /** increase Nesting **/
      else if (tkn === '(')

      const newBranch = [freshStack()]
      tgtStk.num = newBranch
      targets.push(newBranch)

      /** decrease Nesting **/
      else if (tkn === ')')

      if (tgtStk.op else
      throw new Error(`Unparsable token: $tkn`)


      return tree, targets
      , acc).tree




      // :: StkTree -> EqnTree
      // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
      // StkBranch = Num | StkTree
      // EqnTree = [[{b:EqnBranch, e:EqnBranch, efn:(Num -> Num), bfn:(Num -> Num)]]
      // EqnBranch = Num | EqnTree
      const buildEqnTree = stackTree =>

      return stackTree.reduce((eqnTree, stk) =>

      const op, fns = stk
      const fullfn = pipe(...fns)
      const num = typeof stk.num === 'number' ? stk.num : buildEqnTree(stk.num)

      if (op === '+')
      eqnTree.push([ b: num, e: 1, bfn: fullfn, efn: id ])

      else if (op === '-')
      eqnTree.push([ b: -num, e: 1, bfn: fullfn, efn: id ])

      else if (op === '*')
      eqnTree.last.push( b: num, e: 1, bfn: fullfn, efn: id )

      else if (op === '/')
      eqnTree.last.push( b: 1 / num, e: 1, bfn: fullfn, efn: id )

      else if (op === '^')
      eqnTree.last.last.e = num
      eqnTree.last.last.efn = fullfn

      else
      throw new Error(`Unknown operator: $op`)


      return eqnTree
      , )


      // spw = sum of product of powers
      const evaluate = spw =>

      if (!(spw instanceof Object)) return spw

      return spw.reduce((s, pw) =>

      return s + pw.reduce((p, w) =>

      const b = typeof w.b === 'number' ? w.b : evaluate(w.b)
      const e = typeof w.e === 'number' ? w.e : evaluate(w.e)
      const bfn, efn = w

      return p * (bfn(b) ** efn(e))
      , 1)

      , 0)
      ;


      // :: Num -> Num
      const precisionRound = (f, p) =>
      const factor = 10 ** p
      return Math.round(f * factor) / factor


      // :: String -> Num
      const parse = s =>

      if (/[!"'§$&?,;:#]/.test(s))
      throw new Error('You may only enter numbers, operators, or functions')


      const v = pipe(
      lintEqn,
      buildStackTree,
      buildEqnTree,
      evaluate,
      )(s)
      return typeof v === 'number' ? v : NaN
      ;


      I have also put emphasis on making this accept just about any string a user might throw at it. So these are the tests my parser will satisfy as of now:



      const test = (string, expectation) => 
      const approx = f => precisionRound(f, 15)
      const result = parse(string)
      console.log(approx(result) === approx(expectation))


      test('1+2',3)
      test('1+2+3+4',10)
      test('2*3',6)
      test('2*3*4*5',120)
      test('1+2*3+4',11)
      test('1*2+3*4',14)
      test('2^3',8)
      test('2^3 + 1',9)
      test('2^3 * 3',24)
      test('1 + 2^3 * 3',25)
      test('3^2 + 4*2',17)
      test('12 - 3*4',0)
      test('12 * 3/4',9)
      test('14/7 + 6',8)

      test('sin 0',0)
      test('sin 0 +1',1)
      test('cos 0',1)
      test('cos 90°',0)
      test('cos 180°',-1)
      test('cos 0°',1)
      test('ln e',1)
      test('1^ln e',1)
      test('e^1',Math.E)
      test('e^3',Math.E ** 3)
      test('3^e',3 ** Math.E)
      test('e^e',Math.E ** Math.E)
      test('e^ln e',Math.E)
      test('ln exp 1',1)
      test('lg 1000',3)

      test('sin exp 3.721', Math.sin(Math.exp(3.721)))
      test('exp sin 3.721', Math.exp(Math.sin(3.721)))
      test('4^sin 3.721', 4 ** (Math.sin(3.721)))
      test('sin 1 + exp 3.721', Math.sin(1) + Math.exp(3.721))

      test(' --4',4)
      test('-- 4',4)
      test('- - 4',4)
      test(' - - 4',4)
      test(' -- 4',4)
      test('- -4',4)
      test('--4',4)
      test(' -4',-4)
      test('-4',-4)
      test(' -4',-4)
      test('- 4',-4)

      test('1+2', 3)
      test('1+2*3+4', 11)
      test('4+(1+2)*(3+4)', 25)
      test('2^(3*(1+2))', 512)


      My main concerns are readability/maintainability of the code. I do not know about performance optimization yet, so comments on that would be interesting as well. It is my first JS project, so any form of feedback is highly appreciated.







      share|improve this question













      Here is an equation parser that I just wrote. My focus was on readability and the prospect of adding new features in the future. Since I like a somewhat functional style, I also gave type annotations, especially for the more complex cases. I do know that this is not purely functional, and that was by no means the aim of this program. I did however keep the top-level functions completely pure, or at least I hope so.



      "use strict";

      Object.defineProperties(Array.prototype,
      head: get() return this[0] ,
      tail: get() return this.slice(1, this.length) ,
      last: get() return this[this.length - 1] ,
      init: get() return this.slice(0, this.length - 1) ,
      )

      const id = x => x
      const pipe = (...fns) => arg => fns.reduce((stack, f) => f(stack), arg)

      const FN =
      /** trigonometric functions **/
      sin: f => Math.sin(f),
      cos: f => Math.cos(f),
      tan: f => Math.tan(f),
      sinh: f => Math.sinh(f),
      cosh: f => Math.cosh(f),
      tanh: f => Math.tanh(f),
      asin: f => Math.asin(f),
      acos: f => Math.acos(f),
      atan: f => Math.atan(f),
      asinh: f => Math.asinh(f),
      acosh: f => Math.acosh(f),
      atanh: f => Math.atanh(f),

      deg: f => f * 180/Math.PI,
      rad: f => f * Math.PI/180,

      /** exponentiation etc. **/
      exp: f => Math.exp(f),
      ln: f => Math.log(f),
      lg: f => Math.log10(f),
      sqrt: f => Math.sqrt(f),

      /** misc **/
      fac: i =>
      if (i !== Math.trunc(i)) return undefined
      const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
      return __fac(i)
      ,



      const CONST =
      e: Math.E,
      pi: Math.PI,



      // --------------------------- equation linter ------------------------------ //

      // :: String -> String
      const lintEqn = s =>

      const startWithPlus = s => s.replace(/($


      // ------------------------------ main logic -------------------------------- //

      // :: String -> StkTree
      // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
      // StkBranch = Num | StkTree
      const buildStackTree = s =>

      const isFloat = s => /^ *-?d+(.d+)?([eE][+-]?d+)? *$/.test(s)
      const isConst = s => CONST.hasOwnProperty(s)
      const isDeg = s => /^d+(.d+)?°$/.test(s)
      const isOp = c => /^[+-*/^]$/.test(c)
      const isFn = s => FN.hasOwnProperty(s)

      const freshStack = () => (
      op: undefined,
      num: undefined,
      fns: [id],
      )

      const acc =
      tree: [freshStack()],
      targets: ,

      acc.targets.push(acc.tree)

      return s.split(' ').reduce((tree, targets, tkn) =>

      const tgtTree = targets.last

      if (tgtTree.last.num !== undefined)
      tgtTree.push(freshStack())

      const tgtStk = tgtTree.last

      if (isOp(tkn))
      if (!tgtStk.op)
      tgtStk.op = tkn
      else
      throw new Error(`Redundant operator: $tkn`)


      else if (isFloat(tkn))
      tgtStk.num = (parseFloat(tkn))

      else if (isFn(tkn))
      tgtStk.fns.unshift(FN[tkn])

      else if (isConst(tkn))
      tgtStk.num = CONST[tkn]

      else if (isDeg(tkn))
      tgtStk.num = CONST.pi * parseFloat(tkn) / 180


      /** increase Nesting **/
      else if (tkn === '(')

      const newBranch = [freshStack()]
      tgtStk.num = newBranch
      targets.push(newBranch)

      /** decrease Nesting **/
      else if (tkn === ')')

      if (tgtStk.op else
      throw new Error(`Unparsable token: $tkn`)


      return tree, targets
      , acc).tree




      // :: StkTree -> EqnTree
      // StkTree = [op: String, num: StkBranch, fns[(Num -> Num)]]
      // StkBranch = Num | StkTree
      // EqnTree = [[{b:EqnBranch, e:EqnBranch, efn:(Num -> Num), bfn:(Num -> Num)]]
      // EqnBranch = Num | EqnTree
      const buildEqnTree = stackTree =>

      return stackTree.reduce((eqnTree, stk) =>

      const op, fns = stk
      const fullfn = pipe(...fns)
      const num = typeof stk.num === 'number' ? stk.num : buildEqnTree(stk.num)

      if (op === '+')
      eqnTree.push([ b: num, e: 1, bfn: fullfn, efn: id ])

      else if (op === '-')
      eqnTree.push([ b: -num, e: 1, bfn: fullfn, efn: id ])

      else if (op === '*')
      eqnTree.last.push( b: num, e: 1, bfn: fullfn, efn: id )

      else if (op === '/')
      eqnTree.last.push( b: 1 / num, e: 1, bfn: fullfn, efn: id )

      else if (op === '^')
      eqnTree.last.last.e = num
      eqnTree.last.last.efn = fullfn

      else
      throw new Error(`Unknown operator: $op`)


      return eqnTree
      , )


      // spw = sum of product of powers
      const evaluate = spw =>

      if (!(spw instanceof Object)) return spw

      return spw.reduce((s, pw) =>

      return s + pw.reduce((p, w) =>

      const b = typeof w.b === 'number' ? w.b : evaluate(w.b)
      const e = typeof w.e === 'number' ? w.e : evaluate(w.e)
      const bfn, efn = w

      return p * (bfn(b) ** efn(e))
      , 1)

      , 0)
      ;


      // :: Num -> Num
      const precisionRound = (f, p) =>
      const factor = 10 ** p
      return Math.round(f * factor) / factor


      // :: String -> Num
      const parse = s =>

      if (/[!"'§$&?,;:#]/.test(s))
      throw new Error('You may only enter numbers, operators, or functions')


      const v = pipe(
      lintEqn,
      buildStackTree,
      buildEqnTree,
      evaluate,
      )(s)
      return typeof v === 'number' ? v : NaN
      ;


      I have also put emphasis on making this accept just about any string a user might throw at it. So these are the tests my parser will satisfy as of now:



      const test = (string, expectation) => 
      const approx = f => precisionRound(f, 15)
      const result = parse(string)
      console.log(approx(result) === approx(expectation))


      test('1+2',3)
      test('1+2+3+4',10)
      test('2*3',6)
      test('2*3*4*5',120)
      test('1+2*3+4',11)
      test('1*2+3*4',14)
      test('2^3',8)
      test('2^3 + 1',9)
      test('2^3 * 3',24)
      test('1 + 2^3 * 3',25)
      test('3^2 + 4*2',17)
      test('12 - 3*4',0)
      test('12 * 3/4',9)
      test('14/7 + 6',8)

      test('sin 0',0)
      test('sin 0 +1',1)
      test('cos 0',1)
      test('cos 90°',0)
      test('cos 180°',-1)
      test('cos 0°',1)
      test('ln e',1)
      test('1^ln e',1)
      test('e^1',Math.E)
      test('e^3',Math.E ** 3)
      test('3^e',3 ** Math.E)
      test('e^e',Math.E ** Math.E)
      test('e^ln e',Math.E)
      test('ln exp 1',1)
      test('lg 1000',3)

      test('sin exp 3.721', Math.sin(Math.exp(3.721)))
      test('exp sin 3.721', Math.exp(Math.sin(3.721)))
      test('4^sin 3.721', 4 ** (Math.sin(3.721)))
      test('sin 1 + exp 3.721', Math.sin(1) + Math.exp(3.721))

      test(' --4',4)
      test('-- 4',4)
      test('- - 4',4)
      test(' - - 4',4)
      test(' -- 4',4)
      test('- -4',4)
      test('--4',4)
      test(' -4',-4)
      test('-4',-4)
      test(' -4',-4)
      test('- 4',-4)

      test('1+2', 3)
      test('1+2*3+4', 11)
      test('4+(1+2)*(3+4)', 25)
      test('2^(3*(1+2))', 512)


      My main concerns are readability/maintainability of the code. I do not know about performance optimization yet, so comments on that would be interesting as well. It is my first JS project, so any form of feedback is highly appreciated.









      share|improve this question












      share|improve this question




      share|improve this question








      edited Feb 7 at 0:04









      Jamal♦

      30.1k11114225




      30.1k11114225









      asked Feb 6 at 21:37









      tillyboy

      11




      11




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          Errors, bugs, and precision.



          This is not a complete review, just pointing out some problems with the code.




          fac its Buggy



          The factorial function is buggy and will throw a call stack overflow for negative inputs, and incorrect values for values over 22. Also I don't know why you have all the underscores, seems like you don't trust the language.




           fac: i => 
          if (i !== Math.trunc(i)) return undefined
          const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
          return __fac(i)
          ,



          Would be better as



           fac: i => 
          if (i !== Math.trunc(i) ,


          However there are only 23 valid answers so the best way is via lookup rather than the dangerous and slow recursive solution.



           // Declare all solutions outside the function 
          const factorials = [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000];;

          // Much quicker without worrying about being near the top of the call stack
          fac: i => factorials[i] === undefined ? i > 22 ? undefined : NaN : factorials[i],


          Precision testing is flawed...



          ...because precision function is flawed. JavaScript uses FLOATING point numbers, but you are treating them like fixed point numbers.



          Consider "0.00000000000000013 * 2" (Small value is 1.3e-16) JavaScript will happily return the correct value 2.6e-16



          I think you are trying to fix problems like "0.00000000000000013 ** 2" which JavaScript will calculate to be 1.6899999999999998e-32 which has an error of 2e-48



          Both examples your code will round to zero, and the test will pass even if it is completely stuffing up the operators eg approx(1.3e-16 * 2) === approx(1.3e-16 ** 2) is true which is in fact out by 16 orders of magnitude.



          You are better of providing the test function with the JavaScript calculated value. Don't test with the known result test("2 * 3", 6) but rather the calculated result test("2 * 3", 2 * 3) and remove the calls to precisionRound .



          Euler's constant



          Looking at the code it it seams to me that values entered as exponents will be incorrectly evaluated (maybe throw) eg parse("1.2e-16 * 2") will not work. Though I am not sure, I have not run your code?



          Triming



          Javascript has a trim function so there is no need for trimWhiteSpace



          Thus




           return pipe(
          startWithPlus,
          condenseOperators,
          separateTokens,
          trimWhiteSpace,
          )('+' + s)



          becomes



           return pipe(
          startWithPlus,
          condenseOperators,
          separateTokens,
          )('+' + s).trim()


          Plus a +?



          Why add the plus? your code can more easily add the plus in buildStackTree



          A better parseFloat



          A better way to parse a float is Number(numberAsString) because parseFloat tries to fix values while creating a Number will not.



           console.log(parseFloat("10x")); // >> 10
          console.log(Number("10x")); // >> NaN

          console.log(parseFloat("10.0.0")); // >> 10
          console.log(Number("10.0.0")); // >> NaN


          Do like JavaScript does



          Look at the previous section, when JavaScript parses the string value "10.0.0" it does not throw new Error("Too many decimal points!") but rather it returns NaN



          You are throwing where the better option is NaN. A malformed equation results in a value that is not a number, not a variety of errors that would need to be trapped.



          Personally I would remove all the error checking and let JavaScript throw if it needed (Dont think it would in this case), for the most part it would return NaN on its own.



          And Please...



          ...add the semicolons ';' and reduce the risk of bugs.






          share|improve this answer























            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "196"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: false,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f186952%2fequation-parser-solver%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            Errors, bugs, and precision.



            This is not a complete review, just pointing out some problems with the code.




            fac its Buggy



            The factorial function is buggy and will throw a call stack overflow for negative inputs, and incorrect values for values over 22. Also I don't know why you have all the underscores, seems like you don't trust the language.




             fac: i => 
            if (i !== Math.trunc(i)) return undefined
            const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
            return __fac(i)
            ,



            Would be better as



             fac: i => 
            if (i !== Math.trunc(i) ,


            However there are only 23 valid answers so the best way is via lookup rather than the dangerous and slow recursive solution.



             // Declare all solutions outside the function 
            const factorials = [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000];;

            // Much quicker without worrying about being near the top of the call stack
            fac: i => factorials[i] === undefined ? i > 22 ? undefined : NaN : factorials[i],


            Precision testing is flawed...



            ...because precision function is flawed. JavaScript uses FLOATING point numbers, but you are treating them like fixed point numbers.



            Consider "0.00000000000000013 * 2" (Small value is 1.3e-16) JavaScript will happily return the correct value 2.6e-16



            I think you are trying to fix problems like "0.00000000000000013 ** 2" which JavaScript will calculate to be 1.6899999999999998e-32 which has an error of 2e-48



            Both examples your code will round to zero, and the test will pass even if it is completely stuffing up the operators eg approx(1.3e-16 * 2) === approx(1.3e-16 ** 2) is true which is in fact out by 16 orders of magnitude.



            You are better of providing the test function with the JavaScript calculated value. Don't test with the known result test("2 * 3", 6) but rather the calculated result test("2 * 3", 2 * 3) and remove the calls to precisionRound .



            Euler's constant



            Looking at the code it it seams to me that values entered as exponents will be incorrectly evaluated (maybe throw) eg parse("1.2e-16 * 2") will not work. Though I am not sure, I have not run your code?



            Triming



            Javascript has a trim function so there is no need for trimWhiteSpace



            Thus




             return pipe(
            startWithPlus,
            condenseOperators,
            separateTokens,
            trimWhiteSpace,
            )('+' + s)



            becomes



             return pipe(
            startWithPlus,
            condenseOperators,
            separateTokens,
            )('+' + s).trim()


            Plus a +?



            Why add the plus? your code can more easily add the plus in buildStackTree



            A better parseFloat



            A better way to parse a float is Number(numberAsString) because parseFloat tries to fix values while creating a Number will not.



             console.log(parseFloat("10x")); // >> 10
            console.log(Number("10x")); // >> NaN

            console.log(parseFloat("10.0.0")); // >> 10
            console.log(Number("10.0.0")); // >> NaN


            Do like JavaScript does



            Look at the previous section, when JavaScript parses the string value "10.0.0" it does not throw new Error("Too many decimal points!") but rather it returns NaN



            You are throwing where the better option is NaN. A malformed equation results in a value that is not a number, not a variety of errors that would need to be trapped.



            Personally I would remove all the error checking and let JavaScript throw if it needed (Dont think it would in this case), for the most part it would return NaN on its own.



            And Please...



            ...add the semicolons ';' and reduce the risk of bugs.






            share|improve this answer



























              up vote
              1
              down vote













              Errors, bugs, and precision.



              This is not a complete review, just pointing out some problems with the code.




              fac its Buggy



              The factorial function is buggy and will throw a call stack overflow for negative inputs, and incorrect values for values over 22. Also I don't know why you have all the underscores, seems like you don't trust the language.




               fac: i => 
              if (i !== Math.trunc(i)) return undefined
              const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
              return __fac(i)
              ,



              Would be better as



               fac: i => 
              if (i !== Math.trunc(i) ,


              However there are only 23 valid answers so the best way is via lookup rather than the dangerous and slow recursive solution.



               // Declare all solutions outside the function 
              const factorials = [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000];;

              // Much quicker without worrying about being near the top of the call stack
              fac: i => factorials[i] === undefined ? i > 22 ? undefined : NaN : factorials[i],


              Precision testing is flawed...



              ...because precision function is flawed. JavaScript uses FLOATING point numbers, but you are treating them like fixed point numbers.



              Consider "0.00000000000000013 * 2" (Small value is 1.3e-16) JavaScript will happily return the correct value 2.6e-16



              I think you are trying to fix problems like "0.00000000000000013 ** 2" which JavaScript will calculate to be 1.6899999999999998e-32 which has an error of 2e-48



              Both examples your code will round to zero, and the test will pass even if it is completely stuffing up the operators eg approx(1.3e-16 * 2) === approx(1.3e-16 ** 2) is true which is in fact out by 16 orders of magnitude.



              You are better of providing the test function with the JavaScript calculated value. Don't test with the known result test("2 * 3", 6) but rather the calculated result test("2 * 3", 2 * 3) and remove the calls to precisionRound .



              Euler's constant



              Looking at the code it it seams to me that values entered as exponents will be incorrectly evaluated (maybe throw) eg parse("1.2e-16 * 2") will not work. Though I am not sure, I have not run your code?



              Triming



              Javascript has a trim function so there is no need for trimWhiteSpace



              Thus




               return pipe(
              startWithPlus,
              condenseOperators,
              separateTokens,
              trimWhiteSpace,
              )('+' + s)



              becomes



               return pipe(
              startWithPlus,
              condenseOperators,
              separateTokens,
              )('+' + s).trim()


              Plus a +?



              Why add the plus? your code can more easily add the plus in buildStackTree



              A better parseFloat



              A better way to parse a float is Number(numberAsString) because parseFloat tries to fix values while creating a Number will not.



               console.log(parseFloat("10x")); // >> 10
              console.log(Number("10x")); // >> NaN

              console.log(parseFloat("10.0.0")); // >> 10
              console.log(Number("10.0.0")); // >> NaN


              Do like JavaScript does



              Look at the previous section, when JavaScript parses the string value "10.0.0" it does not throw new Error("Too many decimal points!") but rather it returns NaN



              You are throwing where the better option is NaN. A malformed equation results in a value that is not a number, not a variety of errors that would need to be trapped.



              Personally I would remove all the error checking and let JavaScript throw if it needed (Dont think it would in this case), for the most part it would return NaN on its own.



              And Please...



              ...add the semicolons ';' and reduce the risk of bugs.






              share|improve this answer

























                up vote
                1
                down vote










                up vote
                1
                down vote









                Errors, bugs, and precision.



                This is not a complete review, just pointing out some problems with the code.




                fac its Buggy



                The factorial function is buggy and will throw a call stack overflow for negative inputs, and incorrect values for values over 22. Also I don't know why you have all the underscores, seems like you don't trust the language.




                 fac: i => 
                if (i !== Math.trunc(i)) return undefined
                const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
                return __fac(i)
                ,



                Would be better as



                 fac: i => 
                if (i !== Math.trunc(i) ,


                However there are only 23 valid answers so the best way is via lookup rather than the dangerous and slow recursive solution.



                 // Declare all solutions outside the function 
                const factorials = [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000];;

                // Much quicker without worrying about being near the top of the call stack
                fac: i => factorials[i] === undefined ? i > 22 ? undefined : NaN : factorials[i],


                Precision testing is flawed...



                ...because precision function is flawed. JavaScript uses FLOATING point numbers, but you are treating them like fixed point numbers.



                Consider "0.00000000000000013 * 2" (Small value is 1.3e-16) JavaScript will happily return the correct value 2.6e-16



                I think you are trying to fix problems like "0.00000000000000013 ** 2" which JavaScript will calculate to be 1.6899999999999998e-32 which has an error of 2e-48



                Both examples your code will round to zero, and the test will pass even if it is completely stuffing up the operators eg approx(1.3e-16 * 2) === approx(1.3e-16 ** 2) is true which is in fact out by 16 orders of magnitude.



                You are better of providing the test function with the JavaScript calculated value. Don't test with the known result test("2 * 3", 6) but rather the calculated result test("2 * 3", 2 * 3) and remove the calls to precisionRound .



                Euler's constant



                Looking at the code it it seams to me that values entered as exponents will be incorrectly evaluated (maybe throw) eg parse("1.2e-16 * 2") will not work. Though I am not sure, I have not run your code?



                Triming



                Javascript has a trim function so there is no need for trimWhiteSpace



                Thus




                 return pipe(
                startWithPlus,
                condenseOperators,
                separateTokens,
                trimWhiteSpace,
                )('+' + s)



                becomes



                 return pipe(
                startWithPlus,
                condenseOperators,
                separateTokens,
                )('+' + s).trim()


                Plus a +?



                Why add the plus? your code can more easily add the plus in buildStackTree



                A better parseFloat



                A better way to parse a float is Number(numberAsString) because parseFloat tries to fix values while creating a Number will not.



                 console.log(parseFloat("10x")); // >> 10
                console.log(Number("10x")); // >> NaN

                console.log(parseFloat("10.0.0")); // >> 10
                console.log(Number("10.0.0")); // >> NaN


                Do like JavaScript does



                Look at the previous section, when JavaScript parses the string value "10.0.0" it does not throw new Error("Too many decimal points!") but rather it returns NaN



                You are throwing where the better option is NaN. A malformed equation results in a value that is not a number, not a variety of errors that would need to be trapped.



                Personally I would remove all the error checking and let JavaScript throw if it needed (Dont think it would in this case), for the most part it would return NaN on its own.



                And Please...



                ...add the semicolons ';' and reduce the risk of bugs.






                share|improve this answer















                Errors, bugs, and precision.



                This is not a complete review, just pointing out some problems with the code.




                fac its Buggy



                The factorial function is buggy and will throw a call stack overflow for negative inputs, and incorrect values for values over 22. Also I don't know why you have all the underscores, seems like you don't trust the language.




                 fac: i => 
                if (i !== Math.trunc(i)) return undefined
                const __fac = _i => _i === 0 ? 1 : _i * __fac(_i - 1)
                return __fac(i)
                ,



                Would be better as



                 fac: i => 
                if (i !== Math.trunc(i) ,


                However there are only 23 valid answers so the best way is via lookup rather than the dangerous and slow recursive solution.



                 // Declare all solutions outside the function 
                const factorials = [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,121645100408832000,2432902008176640000,51090942171709440000];;

                // Much quicker without worrying about being near the top of the call stack
                fac: i => factorials[i] === undefined ? i > 22 ? undefined : NaN : factorials[i],


                Precision testing is flawed...



                ...because precision function is flawed. JavaScript uses FLOATING point numbers, but you are treating them like fixed point numbers.



                Consider "0.00000000000000013 * 2" (Small value is 1.3e-16) JavaScript will happily return the correct value 2.6e-16



                I think you are trying to fix problems like "0.00000000000000013 ** 2" which JavaScript will calculate to be 1.6899999999999998e-32 which has an error of 2e-48



                Both examples your code will round to zero, and the test will pass even if it is completely stuffing up the operators eg approx(1.3e-16 * 2) === approx(1.3e-16 ** 2) is true which is in fact out by 16 orders of magnitude.



                You are better of providing the test function with the JavaScript calculated value. Don't test with the known result test("2 * 3", 6) but rather the calculated result test("2 * 3", 2 * 3) and remove the calls to precisionRound .



                Euler's constant



                Looking at the code it it seams to me that values entered as exponents will be incorrectly evaluated (maybe throw) eg parse("1.2e-16 * 2") will not work. Though I am not sure, I have not run your code?



                Triming



                Javascript has a trim function so there is no need for trimWhiteSpace



                Thus




                 return pipe(
                startWithPlus,
                condenseOperators,
                separateTokens,
                trimWhiteSpace,
                )('+' + s)



                becomes



                 return pipe(
                startWithPlus,
                condenseOperators,
                separateTokens,
                )('+' + s).trim()


                Plus a +?



                Why add the plus? your code can more easily add the plus in buildStackTree



                A better parseFloat



                A better way to parse a float is Number(numberAsString) because parseFloat tries to fix values while creating a Number will not.



                 console.log(parseFloat("10x")); // >> 10
                console.log(Number("10x")); // >> NaN

                console.log(parseFloat("10.0.0")); // >> 10
                console.log(Number("10.0.0")); // >> NaN


                Do like JavaScript does



                Look at the previous section, when JavaScript parses the string value "10.0.0" it does not throw new Error("Too many decimal points!") but rather it returns NaN



                You are throwing where the better option is NaN. A malformed equation results in a value that is not a number, not a variety of errors that would need to be trapped.



                Personally I would remove all the error checking and let JavaScript throw if it needed (Dont think it would in this case), for the most part it would return NaN on its own.



                And Please...



                ...add the semicolons ';' and reduce the risk of bugs.







                share|improve this answer















                share|improve this answer



                share|improve this answer








                edited Feb 7 at 12:35


























                answered Feb 7 at 12:28









                Blindman67

                5,3701320




                5,3701320






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f186952%2fequation-parser-solver%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Popular posts from this blog

                    Chat program with C++ and SFML

                    Function to Return a JSON Like Objects Using VBA Collections and Arrays

                    Will my employers contract hold up in court?