Min/Max Heap implementation in Python

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
10
down vote

favorite
1












I'm refreshing some of my datastructures. I saw this as the perfect opportunity to get some feedback on my code.



I'm interested in:



Algorithm wise:



  1. Is my implementation correct? (The tests say so)

  2. Can it be sped up?

  3. Comparing my code to the one in the heapq module, it seems that they do not provide a heapq class, but just provide a set of operations that work on lists? Is this better?

  4. Many implementations I saw iterate over the elements using a while loop in the siftdown method to see if it reaches the end. I instead call siftdown again on the chosen child. Is this approach better or worse?

  5. I've considered to add a parameter to the constructor that specified the size of the list/array in advance. It would then at creation already assign a list of that size to the heap - which will be only partially used at the start. It can counter the effect of lists appending operations - which I believe can tend to be slow? The __last_index pointer will then indicate the part used in the array/list. I did not see this in other implementations, so I wasn't sure this would be a good thing.

Code wise:



  1. Is my code clean and readable?

  2. Do my test suffice (for say an interview)?

  3. Is the usage of subclasses MinHeap and MaxHeap & their comparer method that distincts them, a good approach to provide both type of heaps?

  4. Is the usage of the classmethod a good idea to provide a createHeap() function that creates a new heap object.

  5. Anything other that can help me improve this code or fancify it? ;-)

Heap implementation



class Heap(object):
def __init__(self):
self.__array =
self.__last_index = -1

def push(self, value):
"""
Append item on the back of the heap,
sift upwards if heap property is violated.
"""
self.__array.append(value)
self.__last_index += 1
self.__siftup(self.__last_index)

def pop(self):
"""
Pop root element from the heap (if possible),
put last element as new root and sift downwards till
heap property is satisfied.

"""
if self.__last_index == -1:
raise IndexError("Can't pop from empty heap")
root_value = self.__array[0]
if self.__last_index > 0: # more than one element in the heap
self.__array[0] = self.__array[self.__last_index]
self.__siftdown(0)
self.__last_index -= 1
return root_value

def peek(self):
""" peek at the root, without removing it """
if not self.__array:
return None
return self.__array[0]

def replace(self, new_value):
""" remove root & put NEW element as root & sift down -> no need to sift up """
if self.__last_index == -1:
raise IndexError("Can't pop from empty heap")
root_value = self.__array[0]
self.__array[0] = new_value
self.__siftdown(0)
return root_value

def heapify(self, input_list):
"""
each leaf is a trivial subheap, so we may begin to call
Heapify on each parent of a leaf. Parents of leaves begin
at index n/2. As we go up the tree making subheaps out
of unordered array elements, we build larger and larger
heaps, joining them at the i'th element with Heapify,
until the input list is one big heap.
"""
n = len(input_list)
self.__array = input_list
self.__last_index = n-1
for index in reversed(range(n//2)):
self.__siftdown(index)

@classmethod
def createHeap(cls, input_list):
"""
create an heap based on an inputted list.
"""
heap = cls()
heap.heapify(input_list)
return heap

def __siftdown(self, index):
current_value = self.__array[index]
left_child_index, left_child_value = self.__get_left_child(index)
right_child_index, right_child_value = self.__get_right_child(index)
# the following works because if the right_child_index is not None, then the left_child
# is also not None => property of a complete binary tree, else left will be returned.
best_child_index, best_child_value = (right_child_index, right_child_value) if right_child_index
is not None and self.comparer(right_child_value, left_child_value) else (left_child_index, left_child_value)
if best_child_index is not None and self.comparer(best_child_value, current_value):
self.__array[index], self.__array[best_child_index] =
best_child_value, current_value
self.__siftdown(best_child_index)
return


def __siftup(self, index):
current_value = self.__array[index]
parent_index, parent_value = self.__get_parent(index)
if index > 0 and self.comparer(current_value, parent_value):
self.__array[parent_index], self.__array[index] =
current_value, parent_value
self.__siftup(parent_index)
return

def comparer(self, value1, value2):
raise NotImplementedError("Should not use the baseclass heap
instead use the class MinHeap or MaxHeap.")

def __get_parent(self, index):
if index == 0:
return None, None
parent_index = (index - 1) // 2
return parent_index, self.__array[parent_index]

def __get_left_child(self, index):
left_child_index = 2 * index + 1
if left_child_index > self.__last_index:
return None, None
return left_child_index, self.__array[left_child_index]

def __get_right_child(self, index):
right_child_index = 2 * index + 2
if right_child_index > self.__last_index:
return None, None
return right_child_index, self.__array[right_child_index]

def __repr__(self):
return str(self.__array[:self.__last_index+1])

def __eq__(self, other):
if isinstance(other, Heap):
return self.__array == other.__array
if isinstance(other, list):
return self.__array == other
return NotImplemented

class MinHeap(Heap):
def comparer(self, value1, value2):
return value1 < value2

class MaxHeap(Heap):
def comparer(self, value1, value2):
return value1 > value2


Tests



def manualTest():
"""
Basic test to see step by step changes.
"""
h = MinHeap()
h.push(10)
assert(h == [10])
h.push(20)
assert(h == [10, 20])
h.push(5)
assert(h == [5, 20, 10])
h.push(8)
assert(h == [5, 8, 10, 20])
h.push(3)
assert(h == [3, 5, 10, 20, 8])
h.push(40)
assert(h == [3, 5, 10, 20, 8, 40])
h.push(50)
assert(h == [3, 5, 10, 20, 8, 40, 50])
h.push(1)
assert(h == [1, 3, 10, 5, 8, 40, 50, 20])
assert(h.pop() == 1)
assert(h.pop() == 3)
assert(h.pop() == 5)
assert(h.pop() == 8)
assert(h.pop() == 10)
assert(h.pop() == 20)
assert(h.pop() == 40)
assert(h.pop() == 50)
try:
h.pop()
assert(False)
except IndexError: # check if assertion is thrown when heap is empty
assert(True)
# check createHeap classmethod.
assert(MinHeap.createHeap([2,7,3,1,9,44,23]) == [1, 2, 3, 7, 9, 44, 23])
assert(MaxHeap.createHeap([2,7,3,1,9,44,23]) == [44, 9, 23, 1, 7, 3, 2])


def automaticTest(sample_size):
"""
Test creating a min & max heap, push random values
on it and see if the popped values are sorted.
"""
import random
random_numbers = random.sample(range(100), sample_size)
min_heap = MinHeap()
max_heap = MaxHeap()
for i in random_numbers:
min_heap.push(i)
max_heap.push(i)
random_numbers.sort()
for i in random_numbers:
assert(min_heap.pop() == i)
random_numbers.sort(reverse=True)
for i in random_numbers:
assert(max_heap.pop() == i)

automaticTest(20)
manualTest()






share|improve this question



























    up vote
    10
    down vote

    favorite
    1












    I'm refreshing some of my datastructures. I saw this as the perfect opportunity to get some feedback on my code.



    I'm interested in:



    Algorithm wise:



    1. Is my implementation correct? (The tests say so)

    2. Can it be sped up?

    3. Comparing my code to the one in the heapq module, it seems that they do not provide a heapq class, but just provide a set of operations that work on lists? Is this better?

    4. Many implementations I saw iterate over the elements using a while loop in the siftdown method to see if it reaches the end. I instead call siftdown again on the chosen child. Is this approach better or worse?

    5. I've considered to add a parameter to the constructor that specified the size of the list/array in advance. It would then at creation already assign a list of that size to the heap - which will be only partially used at the start. It can counter the effect of lists appending operations - which I believe can tend to be slow? The __last_index pointer will then indicate the part used in the array/list. I did not see this in other implementations, so I wasn't sure this would be a good thing.

    Code wise:



    1. Is my code clean and readable?

    2. Do my test suffice (for say an interview)?

    3. Is the usage of subclasses MinHeap and MaxHeap & their comparer method that distincts them, a good approach to provide both type of heaps?

    4. Is the usage of the classmethod a good idea to provide a createHeap() function that creates a new heap object.

    5. Anything other that can help me improve this code or fancify it? ;-)

    Heap implementation



    class Heap(object):
    def __init__(self):
    self.__array =
    self.__last_index = -1

    def push(self, value):
    """
    Append item on the back of the heap,
    sift upwards if heap property is violated.
    """
    self.__array.append(value)
    self.__last_index += 1
    self.__siftup(self.__last_index)

    def pop(self):
    """
    Pop root element from the heap (if possible),
    put last element as new root and sift downwards till
    heap property is satisfied.

    """
    if self.__last_index == -1:
    raise IndexError("Can't pop from empty heap")
    root_value = self.__array[0]
    if self.__last_index > 0: # more than one element in the heap
    self.__array[0] = self.__array[self.__last_index]
    self.__siftdown(0)
    self.__last_index -= 1
    return root_value

    def peek(self):
    """ peek at the root, without removing it """
    if not self.__array:
    return None
    return self.__array[0]

    def replace(self, new_value):
    """ remove root & put NEW element as root & sift down -> no need to sift up """
    if self.__last_index == -1:
    raise IndexError("Can't pop from empty heap")
    root_value = self.__array[0]
    self.__array[0] = new_value
    self.__siftdown(0)
    return root_value

    def heapify(self, input_list):
    """
    each leaf is a trivial subheap, so we may begin to call
    Heapify on each parent of a leaf. Parents of leaves begin
    at index n/2. As we go up the tree making subheaps out
    of unordered array elements, we build larger and larger
    heaps, joining them at the i'th element with Heapify,
    until the input list is one big heap.
    """
    n = len(input_list)
    self.__array = input_list
    self.__last_index = n-1
    for index in reversed(range(n//2)):
    self.__siftdown(index)

    @classmethod
    def createHeap(cls, input_list):
    """
    create an heap based on an inputted list.
    """
    heap = cls()
    heap.heapify(input_list)
    return heap

    def __siftdown(self, index):
    current_value = self.__array[index]
    left_child_index, left_child_value = self.__get_left_child(index)
    right_child_index, right_child_value = self.__get_right_child(index)
    # the following works because if the right_child_index is not None, then the left_child
    # is also not None => property of a complete binary tree, else left will be returned.
    best_child_index, best_child_value = (right_child_index, right_child_value) if right_child_index
    is not None and self.comparer(right_child_value, left_child_value) else (left_child_index, left_child_value)
    if best_child_index is not None and self.comparer(best_child_value, current_value):
    self.__array[index], self.__array[best_child_index] =
    best_child_value, current_value
    self.__siftdown(best_child_index)
    return


    def __siftup(self, index):
    current_value = self.__array[index]
    parent_index, parent_value = self.__get_parent(index)
    if index > 0 and self.comparer(current_value, parent_value):
    self.__array[parent_index], self.__array[index] =
    current_value, parent_value
    self.__siftup(parent_index)
    return

    def comparer(self, value1, value2):
    raise NotImplementedError("Should not use the baseclass heap
    instead use the class MinHeap or MaxHeap.")

    def __get_parent(self, index):
    if index == 0:
    return None, None
    parent_index = (index - 1) // 2
    return parent_index, self.__array[parent_index]

    def __get_left_child(self, index):
    left_child_index = 2 * index + 1
    if left_child_index > self.__last_index:
    return None, None
    return left_child_index, self.__array[left_child_index]

    def __get_right_child(self, index):
    right_child_index = 2 * index + 2
    if right_child_index > self.__last_index:
    return None, None
    return right_child_index, self.__array[right_child_index]

    def __repr__(self):
    return str(self.__array[:self.__last_index+1])

    def __eq__(self, other):
    if isinstance(other, Heap):
    return self.__array == other.__array
    if isinstance(other, list):
    return self.__array == other
    return NotImplemented

    class MinHeap(Heap):
    def comparer(self, value1, value2):
    return value1 < value2

    class MaxHeap(Heap):
    def comparer(self, value1, value2):
    return value1 > value2


    Tests



    def manualTest():
    """
    Basic test to see step by step changes.
    """
    h = MinHeap()
    h.push(10)
    assert(h == [10])
    h.push(20)
    assert(h == [10, 20])
    h.push(5)
    assert(h == [5, 20, 10])
    h.push(8)
    assert(h == [5, 8, 10, 20])
    h.push(3)
    assert(h == [3, 5, 10, 20, 8])
    h.push(40)
    assert(h == [3, 5, 10, 20, 8, 40])
    h.push(50)
    assert(h == [3, 5, 10, 20, 8, 40, 50])
    h.push(1)
    assert(h == [1, 3, 10, 5, 8, 40, 50, 20])
    assert(h.pop() == 1)
    assert(h.pop() == 3)
    assert(h.pop() == 5)
    assert(h.pop() == 8)
    assert(h.pop() == 10)
    assert(h.pop() == 20)
    assert(h.pop() == 40)
    assert(h.pop() == 50)
    try:
    h.pop()
    assert(False)
    except IndexError: # check if assertion is thrown when heap is empty
    assert(True)
    # check createHeap classmethod.
    assert(MinHeap.createHeap([2,7,3,1,9,44,23]) == [1, 2, 3, 7, 9, 44, 23])
    assert(MaxHeap.createHeap([2,7,3,1,9,44,23]) == [44, 9, 23, 1, 7, 3, 2])


    def automaticTest(sample_size):
    """
    Test creating a min & max heap, push random values
    on it and see if the popped values are sorted.
    """
    import random
    random_numbers = random.sample(range(100), sample_size)
    min_heap = MinHeap()
    max_heap = MaxHeap()
    for i in random_numbers:
    min_heap.push(i)
    max_heap.push(i)
    random_numbers.sort()
    for i in random_numbers:
    assert(min_heap.pop() == i)
    random_numbers.sort(reverse=True)
    for i in random_numbers:
    assert(max_heap.pop() == i)

    automaticTest(20)
    manualTest()






    share|improve this question























      up vote
      10
      down vote

      favorite
      1









      up vote
      10
      down vote

      favorite
      1






      1





      I'm refreshing some of my datastructures. I saw this as the perfect opportunity to get some feedback on my code.



      I'm interested in:



      Algorithm wise:



      1. Is my implementation correct? (The tests say so)

      2. Can it be sped up?

      3. Comparing my code to the one in the heapq module, it seems that they do not provide a heapq class, but just provide a set of operations that work on lists? Is this better?

      4. Many implementations I saw iterate over the elements using a while loop in the siftdown method to see if it reaches the end. I instead call siftdown again on the chosen child. Is this approach better or worse?

      5. I've considered to add a parameter to the constructor that specified the size of the list/array in advance. It would then at creation already assign a list of that size to the heap - which will be only partially used at the start. It can counter the effect of lists appending operations - which I believe can tend to be slow? The __last_index pointer will then indicate the part used in the array/list. I did not see this in other implementations, so I wasn't sure this would be a good thing.

      Code wise:



      1. Is my code clean and readable?

      2. Do my test suffice (for say an interview)?

      3. Is the usage of subclasses MinHeap and MaxHeap & their comparer method that distincts them, a good approach to provide both type of heaps?

      4. Is the usage of the classmethod a good idea to provide a createHeap() function that creates a new heap object.

      5. Anything other that can help me improve this code or fancify it? ;-)

      Heap implementation



      class Heap(object):
      def __init__(self):
      self.__array =
      self.__last_index = -1

      def push(self, value):
      """
      Append item on the back of the heap,
      sift upwards if heap property is violated.
      """
      self.__array.append(value)
      self.__last_index += 1
      self.__siftup(self.__last_index)

      def pop(self):
      """
      Pop root element from the heap (if possible),
      put last element as new root and sift downwards till
      heap property is satisfied.

      """
      if self.__last_index == -1:
      raise IndexError("Can't pop from empty heap")
      root_value = self.__array[0]
      if self.__last_index > 0: # more than one element in the heap
      self.__array[0] = self.__array[self.__last_index]
      self.__siftdown(0)
      self.__last_index -= 1
      return root_value

      def peek(self):
      """ peek at the root, without removing it """
      if not self.__array:
      return None
      return self.__array[0]

      def replace(self, new_value):
      """ remove root & put NEW element as root & sift down -> no need to sift up """
      if self.__last_index == -1:
      raise IndexError("Can't pop from empty heap")
      root_value = self.__array[0]
      self.__array[0] = new_value
      self.__siftdown(0)
      return root_value

      def heapify(self, input_list):
      """
      each leaf is a trivial subheap, so we may begin to call
      Heapify on each parent of a leaf. Parents of leaves begin
      at index n/2. As we go up the tree making subheaps out
      of unordered array elements, we build larger and larger
      heaps, joining them at the i'th element with Heapify,
      until the input list is one big heap.
      """
      n = len(input_list)
      self.__array = input_list
      self.__last_index = n-1
      for index in reversed(range(n//2)):
      self.__siftdown(index)

      @classmethod
      def createHeap(cls, input_list):
      """
      create an heap based on an inputted list.
      """
      heap = cls()
      heap.heapify(input_list)
      return heap

      def __siftdown(self, index):
      current_value = self.__array[index]
      left_child_index, left_child_value = self.__get_left_child(index)
      right_child_index, right_child_value = self.__get_right_child(index)
      # the following works because if the right_child_index is not None, then the left_child
      # is also not None => property of a complete binary tree, else left will be returned.
      best_child_index, best_child_value = (right_child_index, right_child_value) if right_child_index
      is not None and self.comparer(right_child_value, left_child_value) else (left_child_index, left_child_value)
      if best_child_index is not None and self.comparer(best_child_value, current_value):
      self.__array[index], self.__array[best_child_index] =
      best_child_value, current_value
      self.__siftdown(best_child_index)
      return


      def __siftup(self, index):
      current_value = self.__array[index]
      parent_index, parent_value = self.__get_parent(index)
      if index > 0 and self.comparer(current_value, parent_value):
      self.__array[parent_index], self.__array[index] =
      current_value, parent_value
      self.__siftup(parent_index)
      return

      def comparer(self, value1, value2):
      raise NotImplementedError("Should not use the baseclass heap
      instead use the class MinHeap or MaxHeap.")

      def __get_parent(self, index):
      if index == 0:
      return None, None
      parent_index = (index - 1) // 2
      return parent_index, self.__array[parent_index]

      def __get_left_child(self, index):
      left_child_index = 2 * index + 1
      if left_child_index > self.__last_index:
      return None, None
      return left_child_index, self.__array[left_child_index]

      def __get_right_child(self, index):
      right_child_index = 2 * index + 2
      if right_child_index > self.__last_index:
      return None, None
      return right_child_index, self.__array[right_child_index]

      def __repr__(self):
      return str(self.__array[:self.__last_index+1])

      def __eq__(self, other):
      if isinstance(other, Heap):
      return self.__array == other.__array
      if isinstance(other, list):
      return self.__array == other
      return NotImplemented

      class MinHeap(Heap):
      def comparer(self, value1, value2):
      return value1 < value2

      class MaxHeap(Heap):
      def comparer(self, value1, value2):
      return value1 > value2


      Tests



      def manualTest():
      """
      Basic test to see step by step changes.
      """
      h = MinHeap()
      h.push(10)
      assert(h == [10])
      h.push(20)
      assert(h == [10, 20])
      h.push(5)
      assert(h == [5, 20, 10])
      h.push(8)
      assert(h == [5, 8, 10, 20])
      h.push(3)
      assert(h == [3, 5, 10, 20, 8])
      h.push(40)
      assert(h == [3, 5, 10, 20, 8, 40])
      h.push(50)
      assert(h == [3, 5, 10, 20, 8, 40, 50])
      h.push(1)
      assert(h == [1, 3, 10, 5, 8, 40, 50, 20])
      assert(h.pop() == 1)
      assert(h.pop() == 3)
      assert(h.pop() == 5)
      assert(h.pop() == 8)
      assert(h.pop() == 10)
      assert(h.pop() == 20)
      assert(h.pop() == 40)
      assert(h.pop() == 50)
      try:
      h.pop()
      assert(False)
      except IndexError: # check if assertion is thrown when heap is empty
      assert(True)
      # check createHeap classmethod.
      assert(MinHeap.createHeap([2,7,3,1,9,44,23]) == [1, 2, 3, 7, 9, 44, 23])
      assert(MaxHeap.createHeap([2,7,3,1,9,44,23]) == [44, 9, 23, 1, 7, 3, 2])


      def automaticTest(sample_size):
      """
      Test creating a min & max heap, push random values
      on it and see if the popped values are sorted.
      """
      import random
      random_numbers = random.sample(range(100), sample_size)
      min_heap = MinHeap()
      max_heap = MaxHeap()
      for i in random_numbers:
      min_heap.push(i)
      max_heap.push(i)
      random_numbers.sort()
      for i in random_numbers:
      assert(min_heap.pop() == i)
      random_numbers.sort(reverse=True)
      for i in random_numbers:
      assert(max_heap.pop() == i)

      automaticTest(20)
      manualTest()






      share|improve this question













      I'm refreshing some of my datastructures. I saw this as the perfect opportunity to get some feedback on my code.



      I'm interested in:



      Algorithm wise:



      1. Is my implementation correct? (The tests say so)

      2. Can it be sped up?

      3. Comparing my code to the one in the heapq module, it seems that they do not provide a heapq class, but just provide a set of operations that work on lists? Is this better?

      4. Many implementations I saw iterate over the elements using a while loop in the siftdown method to see if it reaches the end. I instead call siftdown again on the chosen child. Is this approach better or worse?

      5. I've considered to add a parameter to the constructor that specified the size of the list/array in advance. It would then at creation already assign a list of that size to the heap - which will be only partially used at the start. It can counter the effect of lists appending operations - which I believe can tend to be slow? The __last_index pointer will then indicate the part used in the array/list. I did not see this in other implementations, so I wasn't sure this would be a good thing.

      Code wise:



      1. Is my code clean and readable?

      2. Do my test suffice (for say an interview)?

      3. Is the usage of subclasses MinHeap and MaxHeap & their comparer method that distincts them, a good approach to provide both type of heaps?

      4. Is the usage of the classmethod a good idea to provide a createHeap() function that creates a new heap object.

      5. Anything other that can help me improve this code or fancify it? ;-)

      Heap implementation



      class Heap(object):
      def __init__(self):
      self.__array =
      self.__last_index = -1

      def push(self, value):
      """
      Append item on the back of the heap,
      sift upwards if heap property is violated.
      """
      self.__array.append(value)
      self.__last_index += 1
      self.__siftup(self.__last_index)

      def pop(self):
      """
      Pop root element from the heap (if possible),
      put last element as new root and sift downwards till
      heap property is satisfied.

      """
      if self.__last_index == -1:
      raise IndexError("Can't pop from empty heap")
      root_value = self.__array[0]
      if self.__last_index > 0: # more than one element in the heap
      self.__array[0] = self.__array[self.__last_index]
      self.__siftdown(0)
      self.__last_index -= 1
      return root_value

      def peek(self):
      """ peek at the root, without removing it """
      if not self.__array:
      return None
      return self.__array[0]

      def replace(self, new_value):
      """ remove root & put NEW element as root & sift down -> no need to sift up """
      if self.__last_index == -1:
      raise IndexError("Can't pop from empty heap")
      root_value = self.__array[0]
      self.__array[0] = new_value
      self.__siftdown(0)
      return root_value

      def heapify(self, input_list):
      """
      each leaf is a trivial subheap, so we may begin to call
      Heapify on each parent of a leaf. Parents of leaves begin
      at index n/2. As we go up the tree making subheaps out
      of unordered array elements, we build larger and larger
      heaps, joining them at the i'th element with Heapify,
      until the input list is one big heap.
      """
      n = len(input_list)
      self.__array = input_list
      self.__last_index = n-1
      for index in reversed(range(n//2)):
      self.__siftdown(index)

      @classmethod
      def createHeap(cls, input_list):
      """
      create an heap based on an inputted list.
      """
      heap = cls()
      heap.heapify(input_list)
      return heap

      def __siftdown(self, index):
      current_value = self.__array[index]
      left_child_index, left_child_value = self.__get_left_child(index)
      right_child_index, right_child_value = self.__get_right_child(index)
      # the following works because if the right_child_index is not None, then the left_child
      # is also not None => property of a complete binary tree, else left will be returned.
      best_child_index, best_child_value = (right_child_index, right_child_value) if right_child_index
      is not None and self.comparer(right_child_value, left_child_value) else (left_child_index, left_child_value)
      if best_child_index is not None and self.comparer(best_child_value, current_value):
      self.__array[index], self.__array[best_child_index] =
      best_child_value, current_value
      self.__siftdown(best_child_index)
      return


      def __siftup(self, index):
      current_value = self.__array[index]
      parent_index, parent_value = self.__get_parent(index)
      if index > 0 and self.comparer(current_value, parent_value):
      self.__array[parent_index], self.__array[index] =
      current_value, parent_value
      self.__siftup(parent_index)
      return

      def comparer(self, value1, value2):
      raise NotImplementedError("Should not use the baseclass heap
      instead use the class MinHeap or MaxHeap.")

      def __get_parent(self, index):
      if index == 0:
      return None, None
      parent_index = (index - 1) // 2
      return parent_index, self.__array[parent_index]

      def __get_left_child(self, index):
      left_child_index = 2 * index + 1
      if left_child_index > self.__last_index:
      return None, None
      return left_child_index, self.__array[left_child_index]

      def __get_right_child(self, index):
      right_child_index = 2 * index + 2
      if right_child_index > self.__last_index:
      return None, None
      return right_child_index, self.__array[right_child_index]

      def __repr__(self):
      return str(self.__array[:self.__last_index+1])

      def __eq__(self, other):
      if isinstance(other, Heap):
      return self.__array == other.__array
      if isinstance(other, list):
      return self.__array == other
      return NotImplemented

      class MinHeap(Heap):
      def comparer(self, value1, value2):
      return value1 < value2

      class MaxHeap(Heap):
      def comparer(self, value1, value2):
      return value1 > value2


      Tests



      def manualTest():
      """
      Basic test to see step by step changes.
      """
      h = MinHeap()
      h.push(10)
      assert(h == [10])
      h.push(20)
      assert(h == [10, 20])
      h.push(5)
      assert(h == [5, 20, 10])
      h.push(8)
      assert(h == [5, 8, 10, 20])
      h.push(3)
      assert(h == [3, 5, 10, 20, 8])
      h.push(40)
      assert(h == [3, 5, 10, 20, 8, 40])
      h.push(50)
      assert(h == [3, 5, 10, 20, 8, 40, 50])
      h.push(1)
      assert(h == [1, 3, 10, 5, 8, 40, 50, 20])
      assert(h.pop() == 1)
      assert(h.pop() == 3)
      assert(h.pop() == 5)
      assert(h.pop() == 8)
      assert(h.pop() == 10)
      assert(h.pop() == 20)
      assert(h.pop() == 40)
      assert(h.pop() == 50)
      try:
      h.pop()
      assert(False)
      except IndexError: # check if assertion is thrown when heap is empty
      assert(True)
      # check createHeap classmethod.
      assert(MinHeap.createHeap([2,7,3,1,9,44,23]) == [1, 2, 3, 7, 9, 44, 23])
      assert(MaxHeap.createHeap([2,7,3,1,9,44,23]) == [44, 9, 23, 1, 7, 3, 2])


      def automaticTest(sample_size):
      """
      Test creating a min & max heap, push random values
      on it and see if the popped values are sorted.
      """
      import random
      random_numbers = random.sample(range(100), sample_size)
      min_heap = MinHeap()
      max_heap = MaxHeap()
      for i in random_numbers:
      min_heap.push(i)
      max_heap.push(i)
      random_numbers.sort()
      for i in random_numbers:
      assert(min_heap.pop() == i)
      random_numbers.sort(reverse=True)
      for i in random_numbers:
      assert(max_heap.pop() == i)

      automaticTest(20)
      manualTest()








      share|improve this question












      share|improve this question




      share|improve this question








      edited Jun 22 at 16:03
























      asked Jun 22 at 7:39









      DJanssens

      1,193923




      1,193923

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "196"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f197040%2fmin-max-heap-implementation-in-python%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f197040%2fmin-max-heap-implementation-in-python%23new-answer', 'question_page');

          );

          Post as a guest













































































          Popular posts from this blog

          Chat program with C++ and SFML

          Function to Return a JSON Like Objects Using VBA Collections and Arrays

          Will my employers contract hold up in court?