Python 2-opt algorithm for asymmetric TSP too heavy

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
0
down vote

favorite












The initial result is taken from an Ant Colony Optimization algorithm, and is introduced to the heuristic in this form:



path = [(12, 7), (7, 10), (10, 21), (21, 13), (13, 0), 
(0, 11), (11, 14), (14, 15), (15, 2), (2, 17),
(17, 16), (16, 1), (1, 3), (3, 6), (6, 4), (4, 5),
(5, 8), (8, 9), (9, 19), (19, 18), (18, 20), (20, 12)]


Each tuple in the list represents one arc that forms the solution (route), since my approach is to swap arcs. For each swap I defined a function called dos_opt, that takes a pair of arcs and exchanges them.



def dos_opt(comb,path):


There is just one way to "disconnect" the arcs and reconnect them again without forming sub-tours, but as far as I know, under my approach it cannot be done randomly, so first I take the four nodes and make the possible combinations between pairs of them.



 intercambioNodos=set()
for arcos in comb:
for nodos in arcos:
intercambioNodos.add(nodos)


First I define a function to check if there are duplicates between two arcs, to discard the swap between adjacent arcs, which is impossible.



 def cmpT(t1,t2):
return sorted(t1) == sorted(t2)


Then, to check if the first node of the current arc matches with the upcoming, I defined enderezado().



 def enderezado(arco_uno,arco_dos):
if arco_uno[1] == arco_dos[0]:
return True
else:
return False


The previous function is used to check if a path is "connected" properly. If not, it rearranges it by placing the arcs on the right direction; if the final result isn't coherent it contains sub-tours.



 def continuidad(ruta):
for i in range(len(ruta)):
if i+1 < len(ruta):
pos = i + 1
else:
pos = 0
revision = enderezado(ruta[i],ruta[pos])
if revision == False:
for j in ruta:
if ruta[i][1] in j:
if ruta.index(ruta[i]) == ruta.index(j):
continue
else:
reubicado = tuple(j)
indice_a_borrar = int(ruta.index(j))
del ruta[indice_a_borrar]
ruta.insert(pos,reubicado)
revision = enderezado(ruta[i],ruta[pos])
if revision == False:
nuevo = (ruta[pos][1],ruta[pos][0])
ruta[pos] = nuevo
return ruta


If two arcs are swapped, there are two possible reconnections, the correct one and the sub-tours one. To know which one to use, I defined a function to "read" the coherence of a path, stopping when there is a incoherence.



 def evaluacion_sub_ciclos(opciones_ruta):
seguir = True
ruta = ""
while seguir:
for opcion in range(len(opciones_ruta)):
camino = opciones_ruta[opcion]
for arco in opciones_ruta[opcion]:
indice = camino.index(arco)
if indice+1 < len(camino):
pos = indice + 1
else:
pos = 0
revision = enderezado(camino[indice],camino[pos])
if revision == False:
break
elif indice+1 == len(camino):
ruta = camino
seguir = False
return ruta


So, for the possible swaps, first I discard the swap with the same arcs and with existing arcs, resulting in a set with the "admissible" swaps.



 verdad = True
intercambios_totales = set()
intercambios_no_admisibles = set()
intercambios_casi_factibles =set()
for reconexiones in combinations_with_replacement(intercambioNodos,2):
intercambios_totales.add(reconexiones)
if reconexiones[0]==reconexiones[1]:
intercambios_no_admisibles.add(reconexiones)
continue
else:
for existentes in path:
if cmpT(reconexiones,existentes)==verdad:
intercambios_no_admisibles.add(reconexiones)
for casi_factibles in intercambios_totales:
if casi_factibles in intercambios_no_admisibles:
continue
else:
intercambios_casi_factibles.add(casi_factibles)
intercambios_semifinal=list(itertools.combinations(intercambios_casi_factibles,2))
largo_intercambios_semifinal=len(intercambios_semifinal)
otro_filtro = set()
for combInt in intercambios_semifinal:
for nodo_opt in intercambioNodos:
if nodo_opt in combInt[0] and nodo_opt in combInt[1]:
otro_filtro.add(combInt)
intercambios_factibles = list()
for ultimo_filtro in intercambios_semifinal:
if ultimo_filtro not in otro_filtro:
intercambios_factibles.append(ultimo_filtro)


Finally, as I mentioned before, to each swap there are two options, so I evaluate each one, taking the "coherent one" and "mirroring it" (since the distances are asymmetric) to measure the path in both directions and take the minimum.



 ruta = list(path)
ruta_op = [list(path),list(path)]
opciones_ruta = list()
for eliminar_subt in intercambios_factibles:
caso = intercambios_factibles.index(eliminar_subt)
for intercambio in range(len(comb)):
ruta_op[caso][path.index(comb[intercambio])] =
intercambios_factibles[caso][intercambio]
continuidad(ruta_op[caso])
opciones_ruta.append(ruta_op[caso])
ruta = evaluacion_sub_ciclos(opciones_ruta)
ruta_espejo = list()
for arco in ruta[::-1]:
volteado = (arco[1],arco[0])
ruta_espejo.append(volteado)
resultado = [ruta,ruta_espejo]
return resultado


To run the complete heuristic, two functions to measure the path and to check if the arcs are adjacent are needed.



def gen_path_dist(path):
total_dist = 0
for ele in path:
total_dist += distances[ele]
return total_dist

def comparador(a,b):
if len(set(a+b)) < 4:
return False
elif len(set(a+b)) == 4:
return True


For all the combinations of arcs from the path, I discard the swap between same and adjacent arcs, swapping them until the route is improved, taking record of the swaps used and emptying the record each time the route is improved and therefore refreshed to make new swaps, if the same swap is repeated, the route can no longer be improved and the algorithm stops.



dist_actual = gen_path_dist(path)
restart = True
usados = set()
contador_dos_opt = 1
while restart:
for comb in combinations_with_replacement(path, 2):
if comb[0]==comb[1]:
continue
elif comparador(comb[0],comb[1]) == False:
continue

else:
contador_dos_opt += 1
posibilidades = list()
for i in dos_opt(comb,path):
posibilidades.append((i,gen_path_dist(i)))
jerarquizadas = sorted(posibilidades, key=lambda x: x[1])
mejor_alternativa_intercambio = min(jerarquizadas[:1])
if dist_actual > mejor_alternativa_intercambio[1]:
path = mejor_alternativa_intercambio[0]
dist_actual = mejor_alternativa_intercambio[1]
usados = set()
break
elif comb in usados:
print("Intercambios efectuados en ultima iteración: ".format(len(usados)))
restart = False
else:
usados.add(comb)


The algorithm works (as is) but it takes too long to run for example a 70 node instance. Am I doing extra unnecessary steps? Could I "clean" the cache at each run so it doesn't take that much memory?



I considered this np array for the distances of the previous example.



inf = np.inf
distances = ([[ inf, 2307.1, 1314.7, 1323.9, 950.2, 865.8, 1055. ,
493.5, 677.7, 919.1, 406.2, 232.8, 575.4, 169.5,
655.7, 860.6, 1530.1, 1281.2, 805.8, 783.1, 818.7,
124.8],
[ 2307.1, inf, 1360.5, 1001.5, 1180. , 1273.9, 1188.5,
1909.6, 1988.4, 1772.5, 1877.4, 2055.2, 2168.3, 2205. ,
1591.6, 1396.9, 702.5, 952. , 2277.8, 1971.6, 2328.8,
2019.7],
[ 1314.7, 1360.5, inf, 1485.9, 1124.6, 1506.9, 1019.1,
1409.3, 1520.8, 1762.2, 904.5, 1137.2, 1491.7, 1389.2,
673.6, 478.9, 749.1, 500.2, 1722.1, 1699.3, 1812.9,
1203.8],
[ 1323.9, 1001.5, 1485.9, inf, 365.3, 459.2, 432. ,
1094.9, 1001.5, 785.6, 1062.7, 1553.6, 1177.3, 1390.3,
1305. , 1510. , 733.7, 983.2, 1290.8, 984.6, 1341.9,
1204.9],
[ 950.2, 1180. , 1124.6, 365.3, inf, 86.4, 105. ,
722.2, 833.7, 805.5, 690. , 1180.9, 804.5, 1017.5,
932.3, 1137.2, 691. , 624.5, 1035. , 1012.2, 1125.8,
832.2],
[ 865.8, 1273.9, 1506.9, 459.2, 86.4, inf, 189.2,
638.7, 750.3, 885.4, 606.6, 1097.4, 721.1, 934.1,
848.8, 1053.8, 775.2, 708.7, 951.5, 928.8, 1042.3,
748.8],
[ 1055. , 1188.5, 1019.1, 432. , 105. , 189.2, inf,
828.4, 940. , 909.9, 660.6, 1287.1, 910.8, 1123.8,
904.1, 1109. , 586. , 519.5, 1141.2, 1118.5, 1232.1,
938.5],
[ 493.5, 1909.6, 1409.3, 1094.9, 722.2, 638.7, 828.4,
inf, 194.8, 436.2, 511.2, 720. , 87.8, 448.2,
753.4, 958.4, 1417.2, 1379. , 318.2, 295.4, 409. ,
375.6],
[ 677.7, 1988.4, 1520.8, 1001.5, 833.7, 750.3, 940. ,
194.8, inf, 238.9, 623.9, 906.8, 196.2, 621.4,
866.2, 1071.2, 1530. , 1491.8, 402.9, 251.1, 493.7,
562.4],
[ 919.1, 1772.5, 1762.2, 785.6, 805.5, 885.4, 909.9,
436.2, 238.9, inf, 865. , 1147.9, 395.7, 862.5,
1107.3, 1312.3, 1519.3, 1429.8, 420.9, 181.1, 515.6,
803.5],
[ 406.2, 1877.4, 904.5, 1062.7, 690. , 606.6, 660.6,
511.2, 623.9, 865. , inf, 641.7, 591.5, 478.4,
245.3, 450.2, 1119.7, 870.8, 821.9, 799.2, 912.7,
293.1],
[ 232.8, 2055.2, 1137.2, 1553.6, 1180.9, 1097.4, 1287.1,
720. , 906.8, 1147.9, 641.7, inf, 805.3, 344.7,
475.5, 680.4, 1349.9, 1101. , 1003.7, 1012.9, 994. ,
312.3],
[ 575.4, 2168.3, 1491.7, 1177.3, 804.5, 721.1, 910.8,
87.8, 196.2, 395.7, 591.5, 805.3, inf, 512.6,
837.6, 1042.5, 1501.3, 1463.1, 220.2, 221.3, 311. ,
459.7],
[ 169.5, 2205. , 1389.2, 1390.3, 1017.5, 934.1, 1123.8,
448.2, 621.4, 862.5, 478.4, 344.7, 512.6, inf,
725.8, 930.8, 1600.2, 1351.4, 661.9, 721.8, 652.2,
194.6],
[ 655.7, 1591.6, 673.6, 1305. , 932.3, 848.8, 904.1,
753.4, 866.2, 1107.3, 245.3, 475.5, 837.6, 725.8,
inf, 219.4, 888.8, 640. , 1064.4, 1041.6, 1155.2,
546.1],
[ 860.6, 1396.9, 478.9, 1510. , 1137.2, 1053.8, 1109. ,
958.4, 1071.2, 1312.3, 450.2, 680.4, 1042.5, 930.8,
219.4, inf, 694.9, 446.1, 1267.5, 1244.8, 1358.3,
749.3],
[ 1530.1, 702.5, 749.1, 733.7, 691. , 775.2, 586. ,
1417.2, 1530. , 1519.3, 1119.7, 1349.9, 1501.3, 1600.2,
888.8, 694.9, inf, 249.5, 1728.1, 1720.3, 2077.5,
1419.4],
[ 1281.2, 952. , 500.2, 983.2, 624.5, 708.7, 519.5,
1379. , 1491.8, 1429.8, 870.8, 1101. , 1463.1, 1351.4,
640. , 446.1, 249.5, inf, 1688.9, 1666.2, 1779.7,
1170.6],
[ 805.8, 2277.8, 1722.1, 1290.8, 1035. , 951.5, 1141.2,
318.2, 402.9, 420.9, 821.9, 1003.7, 220.2, 661.9,
1064.4, 1267.5, 1728.1, 1688.9, inf, 248.9, 91. ,
690.6],
[ 783.1, 1971.6, 1699.3, 984.6, 1012.2, 928.8, 1118.5,
295.4, 251.1, 181.1, 799.2, 1012.9, 221.3, 721.8,
1041.6, 1244.8, 1720.3, 1666.2, 248.9, inf, 345.8,
671.9],
[ 818.7, 2328.8, 1812.9, 1341.9, 1125.8, 1042.3, 1232.1,
409. , 493.7, 515.6, 912.7, 994. , 311. , 652.2,
1155.2, 1358.3, 2077.5, 1779.7, 91. , 345.8, inf,
780.5],
[ 124.8, 2019.7, 1203.8, 1204.9, 832.2, 748.8, 938.5,
375.6, 562.4, 803.5, 293.1, 312.3, 459.7, 194.6,
546.1, 749.3, 1419.4, 1170.6, 690.6, 671.9, 780.5,
inf]])


Thank you for your time. I appreciate any feedback.







share|improve this question



























    up vote
    0
    down vote

    favorite












    The initial result is taken from an Ant Colony Optimization algorithm, and is introduced to the heuristic in this form:



    path = [(12, 7), (7, 10), (10, 21), (21, 13), (13, 0), 
    (0, 11), (11, 14), (14, 15), (15, 2), (2, 17),
    (17, 16), (16, 1), (1, 3), (3, 6), (6, 4), (4, 5),
    (5, 8), (8, 9), (9, 19), (19, 18), (18, 20), (20, 12)]


    Each tuple in the list represents one arc that forms the solution (route), since my approach is to swap arcs. For each swap I defined a function called dos_opt, that takes a pair of arcs and exchanges them.



    def dos_opt(comb,path):


    There is just one way to "disconnect" the arcs and reconnect them again without forming sub-tours, but as far as I know, under my approach it cannot be done randomly, so first I take the four nodes and make the possible combinations between pairs of them.



     intercambioNodos=set()
    for arcos in comb:
    for nodos in arcos:
    intercambioNodos.add(nodos)


    First I define a function to check if there are duplicates between two arcs, to discard the swap between adjacent arcs, which is impossible.



     def cmpT(t1,t2):
    return sorted(t1) == sorted(t2)


    Then, to check if the first node of the current arc matches with the upcoming, I defined enderezado().



     def enderezado(arco_uno,arco_dos):
    if arco_uno[1] == arco_dos[0]:
    return True
    else:
    return False


    The previous function is used to check if a path is "connected" properly. If not, it rearranges it by placing the arcs on the right direction; if the final result isn't coherent it contains sub-tours.



     def continuidad(ruta):
    for i in range(len(ruta)):
    if i+1 < len(ruta):
    pos = i + 1
    else:
    pos = 0
    revision = enderezado(ruta[i],ruta[pos])
    if revision == False:
    for j in ruta:
    if ruta[i][1] in j:
    if ruta.index(ruta[i]) == ruta.index(j):
    continue
    else:
    reubicado = tuple(j)
    indice_a_borrar = int(ruta.index(j))
    del ruta[indice_a_borrar]
    ruta.insert(pos,reubicado)
    revision = enderezado(ruta[i],ruta[pos])
    if revision == False:
    nuevo = (ruta[pos][1],ruta[pos][0])
    ruta[pos] = nuevo
    return ruta


    If two arcs are swapped, there are two possible reconnections, the correct one and the sub-tours one. To know which one to use, I defined a function to "read" the coherence of a path, stopping when there is a incoherence.



     def evaluacion_sub_ciclos(opciones_ruta):
    seguir = True
    ruta = ""
    while seguir:
    for opcion in range(len(opciones_ruta)):
    camino = opciones_ruta[opcion]
    for arco in opciones_ruta[opcion]:
    indice = camino.index(arco)
    if indice+1 < len(camino):
    pos = indice + 1
    else:
    pos = 0
    revision = enderezado(camino[indice],camino[pos])
    if revision == False:
    break
    elif indice+1 == len(camino):
    ruta = camino
    seguir = False
    return ruta


    So, for the possible swaps, first I discard the swap with the same arcs and with existing arcs, resulting in a set with the "admissible" swaps.



     verdad = True
    intercambios_totales = set()
    intercambios_no_admisibles = set()
    intercambios_casi_factibles =set()
    for reconexiones in combinations_with_replacement(intercambioNodos,2):
    intercambios_totales.add(reconexiones)
    if reconexiones[0]==reconexiones[1]:
    intercambios_no_admisibles.add(reconexiones)
    continue
    else:
    for existentes in path:
    if cmpT(reconexiones,existentes)==verdad:
    intercambios_no_admisibles.add(reconexiones)
    for casi_factibles in intercambios_totales:
    if casi_factibles in intercambios_no_admisibles:
    continue
    else:
    intercambios_casi_factibles.add(casi_factibles)
    intercambios_semifinal=list(itertools.combinations(intercambios_casi_factibles,2))
    largo_intercambios_semifinal=len(intercambios_semifinal)
    otro_filtro = set()
    for combInt in intercambios_semifinal:
    for nodo_opt in intercambioNodos:
    if nodo_opt in combInt[0] and nodo_opt in combInt[1]:
    otro_filtro.add(combInt)
    intercambios_factibles = list()
    for ultimo_filtro in intercambios_semifinal:
    if ultimo_filtro not in otro_filtro:
    intercambios_factibles.append(ultimo_filtro)


    Finally, as I mentioned before, to each swap there are two options, so I evaluate each one, taking the "coherent one" and "mirroring it" (since the distances are asymmetric) to measure the path in both directions and take the minimum.



     ruta = list(path)
    ruta_op = [list(path),list(path)]
    opciones_ruta = list()
    for eliminar_subt in intercambios_factibles:
    caso = intercambios_factibles.index(eliminar_subt)
    for intercambio in range(len(comb)):
    ruta_op[caso][path.index(comb[intercambio])] =
    intercambios_factibles[caso][intercambio]
    continuidad(ruta_op[caso])
    opciones_ruta.append(ruta_op[caso])
    ruta = evaluacion_sub_ciclos(opciones_ruta)
    ruta_espejo = list()
    for arco in ruta[::-1]:
    volteado = (arco[1],arco[0])
    ruta_espejo.append(volteado)
    resultado = [ruta,ruta_espejo]
    return resultado


    To run the complete heuristic, two functions to measure the path and to check if the arcs are adjacent are needed.



    def gen_path_dist(path):
    total_dist = 0
    for ele in path:
    total_dist += distances[ele]
    return total_dist

    def comparador(a,b):
    if len(set(a+b)) < 4:
    return False
    elif len(set(a+b)) == 4:
    return True


    For all the combinations of arcs from the path, I discard the swap between same and adjacent arcs, swapping them until the route is improved, taking record of the swaps used and emptying the record each time the route is improved and therefore refreshed to make new swaps, if the same swap is repeated, the route can no longer be improved and the algorithm stops.



    dist_actual = gen_path_dist(path)
    restart = True
    usados = set()
    contador_dos_opt = 1
    while restart:
    for comb in combinations_with_replacement(path, 2):
    if comb[0]==comb[1]:
    continue
    elif comparador(comb[0],comb[1]) == False:
    continue

    else:
    contador_dos_opt += 1
    posibilidades = list()
    for i in dos_opt(comb,path):
    posibilidades.append((i,gen_path_dist(i)))
    jerarquizadas = sorted(posibilidades, key=lambda x: x[1])
    mejor_alternativa_intercambio = min(jerarquizadas[:1])
    if dist_actual > mejor_alternativa_intercambio[1]:
    path = mejor_alternativa_intercambio[0]
    dist_actual = mejor_alternativa_intercambio[1]
    usados = set()
    break
    elif comb in usados:
    print("Intercambios efectuados en ultima iteración: ".format(len(usados)))
    restart = False
    else:
    usados.add(comb)


    The algorithm works (as is) but it takes too long to run for example a 70 node instance. Am I doing extra unnecessary steps? Could I "clean" the cache at each run so it doesn't take that much memory?



    I considered this np array for the distances of the previous example.



    inf = np.inf
    distances = ([[ inf, 2307.1, 1314.7, 1323.9, 950.2, 865.8, 1055. ,
    493.5, 677.7, 919.1, 406.2, 232.8, 575.4, 169.5,
    655.7, 860.6, 1530.1, 1281.2, 805.8, 783.1, 818.7,
    124.8],
    [ 2307.1, inf, 1360.5, 1001.5, 1180. , 1273.9, 1188.5,
    1909.6, 1988.4, 1772.5, 1877.4, 2055.2, 2168.3, 2205. ,
    1591.6, 1396.9, 702.5, 952. , 2277.8, 1971.6, 2328.8,
    2019.7],
    [ 1314.7, 1360.5, inf, 1485.9, 1124.6, 1506.9, 1019.1,
    1409.3, 1520.8, 1762.2, 904.5, 1137.2, 1491.7, 1389.2,
    673.6, 478.9, 749.1, 500.2, 1722.1, 1699.3, 1812.9,
    1203.8],
    [ 1323.9, 1001.5, 1485.9, inf, 365.3, 459.2, 432. ,
    1094.9, 1001.5, 785.6, 1062.7, 1553.6, 1177.3, 1390.3,
    1305. , 1510. , 733.7, 983.2, 1290.8, 984.6, 1341.9,
    1204.9],
    [ 950.2, 1180. , 1124.6, 365.3, inf, 86.4, 105. ,
    722.2, 833.7, 805.5, 690. , 1180.9, 804.5, 1017.5,
    932.3, 1137.2, 691. , 624.5, 1035. , 1012.2, 1125.8,
    832.2],
    [ 865.8, 1273.9, 1506.9, 459.2, 86.4, inf, 189.2,
    638.7, 750.3, 885.4, 606.6, 1097.4, 721.1, 934.1,
    848.8, 1053.8, 775.2, 708.7, 951.5, 928.8, 1042.3,
    748.8],
    [ 1055. , 1188.5, 1019.1, 432. , 105. , 189.2, inf,
    828.4, 940. , 909.9, 660.6, 1287.1, 910.8, 1123.8,
    904.1, 1109. , 586. , 519.5, 1141.2, 1118.5, 1232.1,
    938.5],
    [ 493.5, 1909.6, 1409.3, 1094.9, 722.2, 638.7, 828.4,
    inf, 194.8, 436.2, 511.2, 720. , 87.8, 448.2,
    753.4, 958.4, 1417.2, 1379. , 318.2, 295.4, 409. ,
    375.6],
    [ 677.7, 1988.4, 1520.8, 1001.5, 833.7, 750.3, 940. ,
    194.8, inf, 238.9, 623.9, 906.8, 196.2, 621.4,
    866.2, 1071.2, 1530. , 1491.8, 402.9, 251.1, 493.7,
    562.4],
    [ 919.1, 1772.5, 1762.2, 785.6, 805.5, 885.4, 909.9,
    436.2, 238.9, inf, 865. , 1147.9, 395.7, 862.5,
    1107.3, 1312.3, 1519.3, 1429.8, 420.9, 181.1, 515.6,
    803.5],
    [ 406.2, 1877.4, 904.5, 1062.7, 690. , 606.6, 660.6,
    511.2, 623.9, 865. , inf, 641.7, 591.5, 478.4,
    245.3, 450.2, 1119.7, 870.8, 821.9, 799.2, 912.7,
    293.1],
    [ 232.8, 2055.2, 1137.2, 1553.6, 1180.9, 1097.4, 1287.1,
    720. , 906.8, 1147.9, 641.7, inf, 805.3, 344.7,
    475.5, 680.4, 1349.9, 1101. , 1003.7, 1012.9, 994. ,
    312.3],
    [ 575.4, 2168.3, 1491.7, 1177.3, 804.5, 721.1, 910.8,
    87.8, 196.2, 395.7, 591.5, 805.3, inf, 512.6,
    837.6, 1042.5, 1501.3, 1463.1, 220.2, 221.3, 311. ,
    459.7],
    [ 169.5, 2205. , 1389.2, 1390.3, 1017.5, 934.1, 1123.8,
    448.2, 621.4, 862.5, 478.4, 344.7, 512.6, inf,
    725.8, 930.8, 1600.2, 1351.4, 661.9, 721.8, 652.2,
    194.6],
    [ 655.7, 1591.6, 673.6, 1305. , 932.3, 848.8, 904.1,
    753.4, 866.2, 1107.3, 245.3, 475.5, 837.6, 725.8,
    inf, 219.4, 888.8, 640. , 1064.4, 1041.6, 1155.2,
    546.1],
    [ 860.6, 1396.9, 478.9, 1510. , 1137.2, 1053.8, 1109. ,
    958.4, 1071.2, 1312.3, 450.2, 680.4, 1042.5, 930.8,
    219.4, inf, 694.9, 446.1, 1267.5, 1244.8, 1358.3,
    749.3],
    [ 1530.1, 702.5, 749.1, 733.7, 691. , 775.2, 586. ,
    1417.2, 1530. , 1519.3, 1119.7, 1349.9, 1501.3, 1600.2,
    888.8, 694.9, inf, 249.5, 1728.1, 1720.3, 2077.5,
    1419.4],
    [ 1281.2, 952. , 500.2, 983.2, 624.5, 708.7, 519.5,
    1379. , 1491.8, 1429.8, 870.8, 1101. , 1463.1, 1351.4,
    640. , 446.1, 249.5, inf, 1688.9, 1666.2, 1779.7,
    1170.6],
    [ 805.8, 2277.8, 1722.1, 1290.8, 1035. , 951.5, 1141.2,
    318.2, 402.9, 420.9, 821.9, 1003.7, 220.2, 661.9,
    1064.4, 1267.5, 1728.1, 1688.9, inf, 248.9, 91. ,
    690.6],
    [ 783.1, 1971.6, 1699.3, 984.6, 1012.2, 928.8, 1118.5,
    295.4, 251.1, 181.1, 799.2, 1012.9, 221.3, 721.8,
    1041.6, 1244.8, 1720.3, 1666.2, 248.9, inf, 345.8,
    671.9],
    [ 818.7, 2328.8, 1812.9, 1341.9, 1125.8, 1042.3, 1232.1,
    409. , 493.7, 515.6, 912.7, 994. , 311. , 652.2,
    1155.2, 1358.3, 2077.5, 1779.7, 91. , 345.8, inf,
    780.5],
    [ 124.8, 2019.7, 1203.8, 1204.9, 832.2, 748.8, 938.5,
    375.6, 562.4, 803.5, 293.1, 312.3, 459.7, 194.6,
    546.1, 749.3, 1419.4, 1170.6, 690.6, 671.9, 780.5,
    inf]])


    Thank you for your time. I appreciate any feedback.







    share|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      The initial result is taken from an Ant Colony Optimization algorithm, and is introduced to the heuristic in this form:



      path = [(12, 7), (7, 10), (10, 21), (21, 13), (13, 0), 
      (0, 11), (11, 14), (14, 15), (15, 2), (2, 17),
      (17, 16), (16, 1), (1, 3), (3, 6), (6, 4), (4, 5),
      (5, 8), (8, 9), (9, 19), (19, 18), (18, 20), (20, 12)]


      Each tuple in the list represents one arc that forms the solution (route), since my approach is to swap arcs. For each swap I defined a function called dos_opt, that takes a pair of arcs and exchanges them.



      def dos_opt(comb,path):


      There is just one way to "disconnect" the arcs and reconnect them again without forming sub-tours, but as far as I know, under my approach it cannot be done randomly, so first I take the four nodes and make the possible combinations between pairs of them.



       intercambioNodos=set()
      for arcos in comb:
      for nodos in arcos:
      intercambioNodos.add(nodos)


      First I define a function to check if there are duplicates between two arcs, to discard the swap between adjacent arcs, which is impossible.



       def cmpT(t1,t2):
      return sorted(t1) == sorted(t2)


      Then, to check if the first node of the current arc matches with the upcoming, I defined enderezado().



       def enderezado(arco_uno,arco_dos):
      if arco_uno[1] == arco_dos[0]:
      return True
      else:
      return False


      The previous function is used to check if a path is "connected" properly. If not, it rearranges it by placing the arcs on the right direction; if the final result isn't coherent it contains sub-tours.



       def continuidad(ruta):
      for i in range(len(ruta)):
      if i+1 < len(ruta):
      pos = i + 1
      else:
      pos = 0
      revision = enderezado(ruta[i],ruta[pos])
      if revision == False:
      for j in ruta:
      if ruta[i][1] in j:
      if ruta.index(ruta[i]) == ruta.index(j):
      continue
      else:
      reubicado = tuple(j)
      indice_a_borrar = int(ruta.index(j))
      del ruta[indice_a_borrar]
      ruta.insert(pos,reubicado)
      revision = enderezado(ruta[i],ruta[pos])
      if revision == False:
      nuevo = (ruta[pos][1],ruta[pos][0])
      ruta[pos] = nuevo
      return ruta


      If two arcs are swapped, there are two possible reconnections, the correct one and the sub-tours one. To know which one to use, I defined a function to "read" the coherence of a path, stopping when there is a incoherence.



       def evaluacion_sub_ciclos(opciones_ruta):
      seguir = True
      ruta = ""
      while seguir:
      for opcion in range(len(opciones_ruta)):
      camino = opciones_ruta[opcion]
      for arco in opciones_ruta[opcion]:
      indice = camino.index(arco)
      if indice+1 < len(camino):
      pos = indice + 1
      else:
      pos = 0
      revision = enderezado(camino[indice],camino[pos])
      if revision == False:
      break
      elif indice+1 == len(camino):
      ruta = camino
      seguir = False
      return ruta


      So, for the possible swaps, first I discard the swap with the same arcs and with existing arcs, resulting in a set with the "admissible" swaps.



       verdad = True
      intercambios_totales = set()
      intercambios_no_admisibles = set()
      intercambios_casi_factibles =set()
      for reconexiones in combinations_with_replacement(intercambioNodos,2):
      intercambios_totales.add(reconexiones)
      if reconexiones[0]==reconexiones[1]:
      intercambios_no_admisibles.add(reconexiones)
      continue
      else:
      for existentes in path:
      if cmpT(reconexiones,existentes)==verdad:
      intercambios_no_admisibles.add(reconexiones)
      for casi_factibles in intercambios_totales:
      if casi_factibles in intercambios_no_admisibles:
      continue
      else:
      intercambios_casi_factibles.add(casi_factibles)
      intercambios_semifinal=list(itertools.combinations(intercambios_casi_factibles,2))
      largo_intercambios_semifinal=len(intercambios_semifinal)
      otro_filtro = set()
      for combInt in intercambios_semifinal:
      for nodo_opt in intercambioNodos:
      if nodo_opt in combInt[0] and nodo_opt in combInt[1]:
      otro_filtro.add(combInt)
      intercambios_factibles = list()
      for ultimo_filtro in intercambios_semifinal:
      if ultimo_filtro not in otro_filtro:
      intercambios_factibles.append(ultimo_filtro)


      Finally, as I mentioned before, to each swap there are two options, so I evaluate each one, taking the "coherent one" and "mirroring it" (since the distances are asymmetric) to measure the path in both directions and take the minimum.



       ruta = list(path)
      ruta_op = [list(path),list(path)]
      opciones_ruta = list()
      for eliminar_subt in intercambios_factibles:
      caso = intercambios_factibles.index(eliminar_subt)
      for intercambio in range(len(comb)):
      ruta_op[caso][path.index(comb[intercambio])] =
      intercambios_factibles[caso][intercambio]
      continuidad(ruta_op[caso])
      opciones_ruta.append(ruta_op[caso])
      ruta = evaluacion_sub_ciclos(opciones_ruta)
      ruta_espejo = list()
      for arco in ruta[::-1]:
      volteado = (arco[1],arco[0])
      ruta_espejo.append(volteado)
      resultado = [ruta,ruta_espejo]
      return resultado


      To run the complete heuristic, two functions to measure the path and to check if the arcs are adjacent are needed.



      def gen_path_dist(path):
      total_dist = 0
      for ele in path:
      total_dist += distances[ele]
      return total_dist

      def comparador(a,b):
      if len(set(a+b)) < 4:
      return False
      elif len(set(a+b)) == 4:
      return True


      For all the combinations of arcs from the path, I discard the swap between same and adjacent arcs, swapping them until the route is improved, taking record of the swaps used and emptying the record each time the route is improved and therefore refreshed to make new swaps, if the same swap is repeated, the route can no longer be improved and the algorithm stops.



      dist_actual = gen_path_dist(path)
      restart = True
      usados = set()
      contador_dos_opt = 1
      while restart:
      for comb in combinations_with_replacement(path, 2):
      if comb[0]==comb[1]:
      continue
      elif comparador(comb[0],comb[1]) == False:
      continue

      else:
      contador_dos_opt += 1
      posibilidades = list()
      for i in dos_opt(comb,path):
      posibilidades.append((i,gen_path_dist(i)))
      jerarquizadas = sorted(posibilidades, key=lambda x: x[1])
      mejor_alternativa_intercambio = min(jerarquizadas[:1])
      if dist_actual > mejor_alternativa_intercambio[1]:
      path = mejor_alternativa_intercambio[0]
      dist_actual = mejor_alternativa_intercambio[1]
      usados = set()
      break
      elif comb in usados:
      print("Intercambios efectuados en ultima iteración: ".format(len(usados)))
      restart = False
      else:
      usados.add(comb)


      The algorithm works (as is) but it takes too long to run for example a 70 node instance. Am I doing extra unnecessary steps? Could I "clean" the cache at each run so it doesn't take that much memory?



      I considered this np array for the distances of the previous example.



      inf = np.inf
      distances = ([[ inf, 2307.1, 1314.7, 1323.9, 950.2, 865.8, 1055. ,
      493.5, 677.7, 919.1, 406.2, 232.8, 575.4, 169.5,
      655.7, 860.6, 1530.1, 1281.2, 805.8, 783.1, 818.7,
      124.8],
      [ 2307.1, inf, 1360.5, 1001.5, 1180. , 1273.9, 1188.5,
      1909.6, 1988.4, 1772.5, 1877.4, 2055.2, 2168.3, 2205. ,
      1591.6, 1396.9, 702.5, 952. , 2277.8, 1971.6, 2328.8,
      2019.7],
      [ 1314.7, 1360.5, inf, 1485.9, 1124.6, 1506.9, 1019.1,
      1409.3, 1520.8, 1762.2, 904.5, 1137.2, 1491.7, 1389.2,
      673.6, 478.9, 749.1, 500.2, 1722.1, 1699.3, 1812.9,
      1203.8],
      [ 1323.9, 1001.5, 1485.9, inf, 365.3, 459.2, 432. ,
      1094.9, 1001.5, 785.6, 1062.7, 1553.6, 1177.3, 1390.3,
      1305. , 1510. , 733.7, 983.2, 1290.8, 984.6, 1341.9,
      1204.9],
      [ 950.2, 1180. , 1124.6, 365.3, inf, 86.4, 105. ,
      722.2, 833.7, 805.5, 690. , 1180.9, 804.5, 1017.5,
      932.3, 1137.2, 691. , 624.5, 1035. , 1012.2, 1125.8,
      832.2],
      [ 865.8, 1273.9, 1506.9, 459.2, 86.4, inf, 189.2,
      638.7, 750.3, 885.4, 606.6, 1097.4, 721.1, 934.1,
      848.8, 1053.8, 775.2, 708.7, 951.5, 928.8, 1042.3,
      748.8],
      [ 1055. , 1188.5, 1019.1, 432. , 105. , 189.2, inf,
      828.4, 940. , 909.9, 660.6, 1287.1, 910.8, 1123.8,
      904.1, 1109. , 586. , 519.5, 1141.2, 1118.5, 1232.1,
      938.5],
      [ 493.5, 1909.6, 1409.3, 1094.9, 722.2, 638.7, 828.4,
      inf, 194.8, 436.2, 511.2, 720. , 87.8, 448.2,
      753.4, 958.4, 1417.2, 1379. , 318.2, 295.4, 409. ,
      375.6],
      [ 677.7, 1988.4, 1520.8, 1001.5, 833.7, 750.3, 940. ,
      194.8, inf, 238.9, 623.9, 906.8, 196.2, 621.4,
      866.2, 1071.2, 1530. , 1491.8, 402.9, 251.1, 493.7,
      562.4],
      [ 919.1, 1772.5, 1762.2, 785.6, 805.5, 885.4, 909.9,
      436.2, 238.9, inf, 865. , 1147.9, 395.7, 862.5,
      1107.3, 1312.3, 1519.3, 1429.8, 420.9, 181.1, 515.6,
      803.5],
      [ 406.2, 1877.4, 904.5, 1062.7, 690. , 606.6, 660.6,
      511.2, 623.9, 865. , inf, 641.7, 591.5, 478.4,
      245.3, 450.2, 1119.7, 870.8, 821.9, 799.2, 912.7,
      293.1],
      [ 232.8, 2055.2, 1137.2, 1553.6, 1180.9, 1097.4, 1287.1,
      720. , 906.8, 1147.9, 641.7, inf, 805.3, 344.7,
      475.5, 680.4, 1349.9, 1101. , 1003.7, 1012.9, 994. ,
      312.3],
      [ 575.4, 2168.3, 1491.7, 1177.3, 804.5, 721.1, 910.8,
      87.8, 196.2, 395.7, 591.5, 805.3, inf, 512.6,
      837.6, 1042.5, 1501.3, 1463.1, 220.2, 221.3, 311. ,
      459.7],
      [ 169.5, 2205. , 1389.2, 1390.3, 1017.5, 934.1, 1123.8,
      448.2, 621.4, 862.5, 478.4, 344.7, 512.6, inf,
      725.8, 930.8, 1600.2, 1351.4, 661.9, 721.8, 652.2,
      194.6],
      [ 655.7, 1591.6, 673.6, 1305. , 932.3, 848.8, 904.1,
      753.4, 866.2, 1107.3, 245.3, 475.5, 837.6, 725.8,
      inf, 219.4, 888.8, 640. , 1064.4, 1041.6, 1155.2,
      546.1],
      [ 860.6, 1396.9, 478.9, 1510. , 1137.2, 1053.8, 1109. ,
      958.4, 1071.2, 1312.3, 450.2, 680.4, 1042.5, 930.8,
      219.4, inf, 694.9, 446.1, 1267.5, 1244.8, 1358.3,
      749.3],
      [ 1530.1, 702.5, 749.1, 733.7, 691. , 775.2, 586. ,
      1417.2, 1530. , 1519.3, 1119.7, 1349.9, 1501.3, 1600.2,
      888.8, 694.9, inf, 249.5, 1728.1, 1720.3, 2077.5,
      1419.4],
      [ 1281.2, 952. , 500.2, 983.2, 624.5, 708.7, 519.5,
      1379. , 1491.8, 1429.8, 870.8, 1101. , 1463.1, 1351.4,
      640. , 446.1, 249.5, inf, 1688.9, 1666.2, 1779.7,
      1170.6],
      [ 805.8, 2277.8, 1722.1, 1290.8, 1035. , 951.5, 1141.2,
      318.2, 402.9, 420.9, 821.9, 1003.7, 220.2, 661.9,
      1064.4, 1267.5, 1728.1, 1688.9, inf, 248.9, 91. ,
      690.6],
      [ 783.1, 1971.6, 1699.3, 984.6, 1012.2, 928.8, 1118.5,
      295.4, 251.1, 181.1, 799.2, 1012.9, 221.3, 721.8,
      1041.6, 1244.8, 1720.3, 1666.2, 248.9, inf, 345.8,
      671.9],
      [ 818.7, 2328.8, 1812.9, 1341.9, 1125.8, 1042.3, 1232.1,
      409. , 493.7, 515.6, 912.7, 994. , 311. , 652.2,
      1155.2, 1358.3, 2077.5, 1779.7, 91. , 345.8, inf,
      780.5],
      [ 124.8, 2019.7, 1203.8, 1204.9, 832.2, 748.8, 938.5,
      375.6, 562.4, 803.5, 293.1, 312.3, 459.7, 194.6,
      546.1, 749.3, 1419.4, 1170.6, 690.6, 671.9, 780.5,
      inf]])


      Thank you for your time. I appreciate any feedback.







      share|improve this question













      The initial result is taken from an Ant Colony Optimization algorithm, and is introduced to the heuristic in this form:



      path = [(12, 7), (7, 10), (10, 21), (21, 13), (13, 0), 
      (0, 11), (11, 14), (14, 15), (15, 2), (2, 17),
      (17, 16), (16, 1), (1, 3), (3, 6), (6, 4), (4, 5),
      (5, 8), (8, 9), (9, 19), (19, 18), (18, 20), (20, 12)]


      Each tuple in the list represents one arc that forms the solution (route), since my approach is to swap arcs. For each swap I defined a function called dos_opt, that takes a pair of arcs and exchanges them.



      def dos_opt(comb,path):


      There is just one way to "disconnect" the arcs and reconnect them again without forming sub-tours, but as far as I know, under my approach it cannot be done randomly, so first I take the four nodes and make the possible combinations between pairs of them.



       intercambioNodos=set()
      for arcos in comb:
      for nodos in arcos:
      intercambioNodos.add(nodos)


      First I define a function to check if there are duplicates between two arcs, to discard the swap between adjacent arcs, which is impossible.



       def cmpT(t1,t2):
      return sorted(t1) == sorted(t2)


      Then, to check if the first node of the current arc matches with the upcoming, I defined enderezado().



       def enderezado(arco_uno,arco_dos):
      if arco_uno[1] == arco_dos[0]:
      return True
      else:
      return False


      The previous function is used to check if a path is "connected" properly. If not, it rearranges it by placing the arcs on the right direction; if the final result isn't coherent it contains sub-tours.



       def continuidad(ruta):
      for i in range(len(ruta)):
      if i+1 < len(ruta):
      pos = i + 1
      else:
      pos = 0
      revision = enderezado(ruta[i],ruta[pos])
      if revision == False:
      for j in ruta:
      if ruta[i][1] in j:
      if ruta.index(ruta[i]) == ruta.index(j):
      continue
      else:
      reubicado = tuple(j)
      indice_a_borrar = int(ruta.index(j))
      del ruta[indice_a_borrar]
      ruta.insert(pos,reubicado)
      revision = enderezado(ruta[i],ruta[pos])
      if revision == False:
      nuevo = (ruta[pos][1],ruta[pos][0])
      ruta[pos] = nuevo
      return ruta


      If two arcs are swapped, there are two possible reconnections, the correct one and the sub-tours one. To know which one to use, I defined a function to "read" the coherence of a path, stopping when there is a incoherence.



       def evaluacion_sub_ciclos(opciones_ruta):
      seguir = True
      ruta = ""
      while seguir:
      for opcion in range(len(opciones_ruta)):
      camino = opciones_ruta[opcion]
      for arco in opciones_ruta[opcion]:
      indice = camino.index(arco)
      if indice+1 < len(camino):
      pos = indice + 1
      else:
      pos = 0
      revision = enderezado(camino[indice],camino[pos])
      if revision == False:
      break
      elif indice+1 == len(camino):
      ruta = camino
      seguir = False
      return ruta


      So, for the possible swaps, first I discard the swap with the same arcs and with existing arcs, resulting in a set with the "admissible" swaps.



       verdad = True
      intercambios_totales = set()
      intercambios_no_admisibles = set()
      intercambios_casi_factibles =set()
      for reconexiones in combinations_with_replacement(intercambioNodos,2):
      intercambios_totales.add(reconexiones)
      if reconexiones[0]==reconexiones[1]:
      intercambios_no_admisibles.add(reconexiones)
      continue
      else:
      for existentes in path:
      if cmpT(reconexiones,existentes)==verdad:
      intercambios_no_admisibles.add(reconexiones)
      for casi_factibles in intercambios_totales:
      if casi_factibles in intercambios_no_admisibles:
      continue
      else:
      intercambios_casi_factibles.add(casi_factibles)
      intercambios_semifinal=list(itertools.combinations(intercambios_casi_factibles,2))
      largo_intercambios_semifinal=len(intercambios_semifinal)
      otro_filtro = set()
      for combInt in intercambios_semifinal:
      for nodo_opt in intercambioNodos:
      if nodo_opt in combInt[0] and nodo_opt in combInt[1]:
      otro_filtro.add(combInt)
      intercambios_factibles = list()
      for ultimo_filtro in intercambios_semifinal:
      if ultimo_filtro not in otro_filtro:
      intercambios_factibles.append(ultimo_filtro)


      Finally, as I mentioned before, to each swap there are two options, so I evaluate each one, taking the "coherent one" and "mirroring it" (since the distances are asymmetric) to measure the path in both directions and take the minimum.



       ruta = list(path)
      ruta_op = [list(path),list(path)]
      opciones_ruta = list()
      for eliminar_subt in intercambios_factibles:
      caso = intercambios_factibles.index(eliminar_subt)
      for intercambio in range(len(comb)):
      ruta_op[caso][path.index(comb[intercambio])] =
      intercambios_factibles[caso][intercambio]
      continuidad(ruta_op[caso])
      opciones_ruta.append(ruta_op[caso])
      ruta = evaluacion_sub_ciclos(opciones_ruta)
      ruta_espejo = list()
      for arco in ruta[::-1]:
      volteado = (arco[1],arco[0])
      ruta_espejo.append(volteado)
      resultado = [ruta,ruta_espejo]
      return resultado


      To run the complete heuristic, two functions to measure the path and to check if the arcs are adjacent are needed.



      def gen_path_dist(path):
      total_dist = 0
      for ele in path:
      total_dist += distances[ele]
      return total_dist

      def comparador(a,b):
      if len(set(a+b)) < 4:
      return False
      elif len(set(a+b)) == 4:
      return True


      For all the combinations of arcs from the path, I discard the swap between same and adjacent arcs, swapping them until the route is improved, taking record of the swaps used and emptying the record each time the route is improved and therefore refreshed to make new swaps, if the same swap is repeated, the route can no longer be improved and the algorithm stops.



      dist_actual = gen_path_dist(path)
      restart = True
      usados = set()
      contador_dos_opt = 1
      while restart:
      for comb in combinations_with_replacement(path, 2):
      if comb[0]==comb[1]:
      continue
      elif comparador(comb[0],comb[1]) == False:
      continue

      else:
      contador_dos_opt += 1
      posibilidades = list()
      for i in dos_opt(comb,path):
      posibilidades.append((i,gen_path_dist(i)))
      jerarquizadas = sorted(posibilidades, key=lambda x: x[1])
      mejor_alternativa_intercambio = min(jerarquizadas[:1])
      if dist_actual > mejor_alternativa_intercambio[1]:
      path = mejor_alternativa_intercambio[0]
      dist_actual = mejor_alternativa_intercambio[1]
      usados = set()
      break
      elif comb in usados:
      print("Intercambios efectuados en ultima iteración: ".format(len(usados)))
      restart = False
      else:
      usados.add(comb)


      The algorithm works (as is) but it takes too long to run for example a 70 node instance. Am I doing extra unnecessary steps? Could I "clean" the cache at each run so it doesn't take that much memory?



      I considered this np array for the distances of the previous example.



      inf = np.inf
      distances = ([[ inf, 2307.1, 1314.7, 1323.9, 950.2, 865.8, 1055. ,
      493.5, 677.7, 919.1, 406.2, 232.8, 575.4, 169.5,
      655.7, 860.6, 1530.1, 1281.2, 805.8, 783.1, 818.7,
      124.8],
      [ 2307.1, inf, 1360.5, 1001.5, 1180. , 1273.9, 1188.5,
      1909.6, 1988.4, 1772.5, 1877.4, 2055.2, 2168.3, 2205. ,
      1591.6, 1396.9, 702.5, 952. , 2277.8, 1971.6, 2328.8,
      2019.7],
      [ 1314.7, 1360.5, inf, 1485.9, 1124.6, 1506.9, 1019.1,
      1409.3, 1520.8, 1762.2, 904.5, 1137.2, 1491.7, 1389.2,
      673.6, 478.9, 749.1, 500.2, 1722.1, 1699.3, 1812.9,
      1203.8],
      [ 1323.9, 1001.5, 1485.9, inf, 365.3, 459.2, 432. ,
      1094.9, 1001.5, 785.6, 1062.7, 1553.6, 1177.3, 1390.3,
      1305. , 1510. , 733.7, 983.2, 1290.8, 984.6, 1341.9,
      1204.9],
      [ 950.2, 1180. , 1124.6, 365.3, inf, 86.4, 105. ,
      722.2, 833.7, 805.5, 690. , 1180.9, 804.5, 1017.5,
      932.3, 1137.2, 691. , 624.5, 1035. , 1012.2, 1125.8,
      832.2],
      [ 865.8, 1273.9, 1506.9, 459.2, 86.4, inf, 189.2,
      638.7, 750.3, 885.4, 606.6, 1097.4, 721.1, 934.1,
      848.8, 1053.8, 775.2, 708.7, 951.5, 928.8, 1042.3,
      748.8],
      [ 1055. , 1188.5, 1019.1, 432. , 105. , 189.2, inf,
      828.4, 940. , 909.9, 660.6, 1287.1, 910.8, 1123.8,
      904.1, 1109. , 586. , 519.5, 1141.2, 1118.5, 1232.1,
      938.5],
      [ 493.5, 1909.6, 1409.3, 1094.9, 722.2, 638.7, 828.4,
      inf, 194.8, 436.2, 511.2, 720. , 87.8, 448.2,
      753.4, 958.4, 1417.2, 1379. , 318.2, 295.4, 409. ,
      375.6],
      [ 677.7, 1988.4, 1520.8, 1001.5, 833.7, 750.3, 940. ,
      194.8, inf, 238.9, 623.9, 906.8, 196.2, 621.4,
      866.2, 1071.2, 1530. , 1491.8, 402.9, 251.1, 493.7,
      562.4],
      [ 919.1, 1772.5, 1762.2, 785.6, 805.5, 885.4, 909.9,
      436.2, 238.9, inf, 865. , 1147.9, 395.7, 862.5,
      1107.3, 1312.3, 1519.3, 1429.8, 420.9, 181.1, 515.6,
      803.5],
      [ 406.2, 1877.4, 904.5, 1062.7, 690. , 606.6, 660.6,
      511.2, 623.9, 865. , inf, 641.7, 591.5, 478.4,
      245.3, 450.2, 1119.7, 870.8, 821.9, 799.2, 912.7,
      293.1],
      [ 232.8, 2055.2, 1137.2, 1553.6, 1180.9, 1097.4, 1287.1,
      720. , 906.8, 1147.9, 641.7, inf, 805.3, 344.7,
      475.5, 680.4, 1349.9, 1101. , 1003.7, 1012.9, 994. ,
      312.3],
      [ 575.4, 2168.3, 1491.7, 1177.3, 804.5, 721.1, 910.8,
      87.8, 196.2, 395.7, 591.5, 805.3, inf, 512.6,
      837.6, 1042.5, 1501.3, 1463.1, 220.2, 221.3, 311. ,
      459.7],
      [ 169.5, 2205. , 1389.2, 1390.3, 1017.5, 934.1, 1123.8,
      448.2, 621.4, 862.5, 478.4, 344.7, 512.6, inf,
      725.8, 930.8, 1600.2, 1351.4, 661.9, 721.8, 652.2,
      194.6],
      [ 655.7, 1591.6, 673.6, 1305. , 932.3, 848.8, 904.1,
      753.4, 866.2, 1107.3, 245.3, 475.5, 837.6, 725.8,
      inf, 219.4, 888.8, 640. , 1064.4, 1041.6, 1155.2,
      546.1],
      [ 860.6, 1396.9, 478.9, 1510. , 1137.2, 1053.8, 1109. ,
      958.4, 1071.2, 1312.3, 450.2, 680.4, 1042.5, 930.8,
      219.4, inf, 694.9, 446.1, 1267.5, 1244.8, 1358.3,
      749.3],
      [ 1530.1, 702.5, 749.1, 733.7, 691. , 775.2, 586. ,
      1417.2, 1530. , 1519.3, 1119.7, 1349.9, 1501.3, 1600.2,
      888.8, 694.9, inf, 249.5, 1728.1, 1720.3, 2077.5,
      1419.4],
      [ 1281.2, 952. , 500.2, 983.2, 624.5, 708.7, 519.5,
      1379. , 1491.8, 1429.8, 870.8, 1101. , 1463.1, 1351.4,
      640. , 446.1, 249.5, inf, 1688.9, 1666.2, 1779.7,
      1170.6],
      [ 805.8, 2277.8, 1722.1, 1290.8, 1035. , 951.5, 1141.2,
      318.2, 402.9, 420.9, 821.9, 1003.7, 220.2, 661.9,
      1064.4, 1267.5, 1728.1, 1688.9, inf, 248.9, 91. ,
      690.6],
      [ 783.1, 1971.6, 1699.3, 984.6, 1012.2, 928.8, 1118.5,
      295.4, 251.1, 181.1, 799.2, 1012.9, 221.3, 721.8,
      1041.6, 1244.8, 1720.3, 1666.2, 248.9, inf, 345.8,
      671.9],
      [ 818.7, 2328.8, 1812.9, 1341.9, 1125.8, 1042.3, 1232.1,
      409. , 493.7, 515.6, 912.7, 994. , 311. , 652.2,
      1155.2, 1358.3, 2077.5, 1779.7, 91. , 345.8, inf,
      780.5],
      [ 124.8, 2019.7, 1203.8, 1204.9, 832.2, 748.8, 938.5,
      375.6, 562.4, 803.5, 293.1, 312.3, 459.7, 194.6,
      546.1, 749.3, 1419.4, 1170.6, 690.6, 671.9, 780.5,
      inf]])


      Thank you for your time. I appreciate any feedback.









      share|improve this question












      share|improve this question




      share|improve this question








      edited Mar 21 at 4:37









      Snowbody

      7,7371343




      7,7371343









      asked Mar 21 at 3:54









      Manuel Cabrera

      11




      11

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "196"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f190092%2fpython-2-opt-algorithm-for-asymmetric-tsp-too-heavy%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f190092%2fpython-2-opt-algorithm-for-asymmetric-tsp-too-heavy%23new-answer', 'question_page');

          );

          Post as a guest













































































          Popular posts from this blog

          Chat program with C++ and SFML

          Function to Return a JSON Like Objects Using VBA Collections and Arrays

          Will my employers contract hold up in court?