A deep learning program to train vgg model to detect if there is disease or not on images

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
0
down vote

favorite












The problem I face is, if I have more than 2000 images, the images get loaded into memory and it uses up all the memory. Can you suggest another way by which data can be used without initially loading everything together?



import numpy as np
import os
import time
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
from keras.layers import Dense, Activation, Flatten
from keras.layers import merge, Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split



# Loading the training data
PATH = os.getcwd()
# Define data path
data_path = PATH + 'data'
data_dir_list = os.listdir(data_path)

img_data_list=
q=0;
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'n'.format(dataset))
for img in img_list:
img_path = data_path + '/'+ dataset + '/'+ img
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x = x/255
q=q+1
print(q)
print('Input image shape:', x.shape)
img_data_list.append(x)

img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)


# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')


labels[0:2388]=1
labels[2245:3786]=0


names = ['DR','NO DR']

# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#########################################################################################
# Custom_vgg_model_1
#Training the classifier alone
#image_input = Input(shape=(224, 224, 3))
#
#model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
#model.summary()
#last_layer = model.get_layer('fc2').output
##x= Flatten(name='flatten')(last_layer)
#out = Dense(num_classes, activation='softmax', name='output')(last_layer)
#custom_vgg_model = Model(image_input, out)
#custom_vgg_model.summary()
#
#for layer in custom_vgg_model.layers[:-1]:
# layer.trainable = False
#
#custom_vgg_model.layers[3].trainable
#
#custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
#
#
#t=time.time()
## t = now()
#hist = custom_vgg_model.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
#print('Training time: %s' % (t - time.time()))
#(loss, accuracy) = custom_vgg_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
#
#print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))


####################################################################################################################

#Training the feature extraction also

image_input = Input(shape=(224, 224, 3))

model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')

model.summary()

last_layer = model.get_layer('block5_pool').output
x= Flatten(name='flatten')(last_layer)
x = Dense(128, activation='relu', name='fc1')(x)
x = Dense(128, activation='relu', name='fc2')(x)
out = Dense(num_classes, activation='softmax', name='output')(x)
custom_vgg_model2 = Model(image_input, out)
custom_vgg_model2.summary()

# freeze all the layers except the dense layers
for layer in custom_vgg_model2.layers[:-3]:
layer.trainable = False

custom_vgg_model2.summary()

custom_vgg_model2.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])

t=time.time()
# t = now()
hist = custom_vgg_model2.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model2.evaluate(X_test, y_test, batch_size=10, verbose=1)

print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))

#%%
import matplotlib.pyplot as plt
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(12)

plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])






share|improve this question





















  • Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
    – mochi
    Jan 11 at 8:51










  • yes I have started doing it.
    – sachsom
    Jan 12 at 9:49










  • You can check keras' flow_from_directory
    – mochi
    Jan 12 at 14:07
















up vote
0
down vote

favorite












The problem I face is, if I have more than 2000 images, the images get loaded into memory and it uses up all the memory. Can you suggest another way by which data can be used without initially loading everything together?



import numpy as np
import os
import time
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
from keras.layers import Dense, Activation, Flatten
from keras.layers import merge, Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split



# Loading the training data
PATH = os.getcwd()
# Define data path
data_path = PATH + 'data'
data_dir_list = os.listdir(data_path)

img_data_list=
q=0;
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'n'.format(dataset))
for img in img_list:
img_path = data_path + '/'+ dataset + '/'+ img
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x = x/255
q=q+1
print(q)
print('Input image shape:', x.shape)
img_data_list.append(x)

img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)


# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')


labels[0:2388]=1
labels[2245:3786]=0


names = ['DR','NO DR']

# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#########################################################################################
# Custom_vgg_model_1
#Training the classifier alone
#image_input = Input(shape=(224, 224, 3))
#
#model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
#model.summary()
#last_layer = model.get_layer('fc2').output
##x= Flatten(name='flatten')(last_layer)
#out = Dense(num_classes, activation='softmax', name='output')(last_layer)
#custom_vgg_model = Model(image_input, out)
#custom_vgg_model.summary()
#
#for layer in custom_vgg_model.layers[:-1]:
# layer.trainable = False
#
#custom_vgg_model.layers[3].trainable
#
#custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
#
#
#t=time.time()
## t = now()
#hist = custom_vgg_model.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
#print('Training time: %s' % (t - time.time()))
#(loss, accuracy) = custom_vgg_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
#
#print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))


####################################################################################################################

#Training the feature extraction also

image_input = Input(shape=(224, 224, 3))

model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')

model.summary()

last_layer = model.get_layer('block5_pool').output
x= Flatten(name='flatten')(last_layer)
x = Dense(128, activation='relu', name='fc1')(x)
x = Dense(128, activation='relu', name='fc2')(x)
out = Dense(num_classes, activation='softmax', name='output')(x)
custom_vgg_model2 = Model(image_input, out)
custom_vgg_model2.summary()

# freeze all the layers except the dense layers
for layer in custom_vgg_model2.layers[:-3]:
layer.trainable = False

custom_vgg_model2.summary()

custom_vgg_model2.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])

t=time.time()
# t = now()
hist = custom_vgg_model2.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model2.evaluate(X_test, y_test, batch_size=10, verbose=1)

print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))

#%%
import matplotlib.pyplot as plt
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(12)

plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])






share|improve this question





















  • Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
    – mochi
    Jan 11 at 8:51










  • yes I have started doing it.
    – sachsom
    Jan 12 at 9:49










  • You can check keras' flow_from_directory
    – mochi
    Jan 12 at 14:07












up vote
0
down vote

favorite









up vote
0
down vote

favorite











The problem I face is, if I have more than 2000 images, the images get loaded into memory and it uses up all the memory. Can you suggest another way by which data can be used without initially loading everything together?



import numpy as np
import os
import time
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
from keras.layers import Dense, Activation, Flatten
from keras.layers import merge, Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split



# Loading the training data
PATH = os.getcwd()
# Define data path
data_path = PATH + 'data'
data_dir_list = os.listdir(data_path)

img_data_list=
q=0;
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'n'.format(dataset))
for img in img_list:
img_path = data_path + '/'+ dataset + '/'+ img
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x = x/255
q=q+1
print(q)
print('Input image shape:', x.shape)
img_data_list.append(x)

img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)


# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')


labels[0:2388]=1
labels[2245:3786]=0


names = ['DR','NO DR']

# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#########################################################################################
# Custom_vgg_model_1
#Training the classifier alone
#image_input = Input(shape=(224, 224, 3))
#
#model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
#model.summary()
#last_layer = model.get_layer('fc2').output
##x= Flatten(name='flatten')(last_layer)
#out = Dense(num_classes, activation='softmax', name='output')(last_layer)
#custom_vgg_model = Model(image_input, out)
#custom_vgg_model.summary()
#
#for layer in custom_vgg_model.layers[:-1]:
# layer.trainable = False
#
#custom_vgg_model.layers[3].trainable
#
#custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
#
#
#t=time.time()
## t = now()
#hist = custom_vgg_model.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
#print('Training time: %s' % (t - time.time()))
#(loss, accuracy) = custom_vgg_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
#
#print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))


####################################################################################################################

#Training the feature extraction also

image_input = Input(shape=(224, 224, 3))

model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')

model.summary()

last_layer = model.get_layer('block5_pool').output
x= Flatten(name='flatten')(last_layer)
x = Dense(128, activation='relu', name='fc1')(x)
x = Dense(128, activation='relu', name='fc2')(x)
out = Dense(num_classes, activation='softmax', name='output')(x)
custom_vgg_model2 = Model(image_input, out)
custom_vgg_model2.summary()

# freeze all the layers except the dense layers
for layer in custom_vgg_model2.layers[:-3]:
layer.trainable = False

custom_vgg_model2.summary()

custom_vgg_model2.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])

t=time.time()
# t = now()
hist = custom_vgg_model2.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model2.evaluate(X_test, y_test, batch_size=10, verbose=1)

print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))

#%%
import matplotlib.pyplot as plt
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(12)

plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])






share|improve this question













The problem I face is, if I have more than 2000 images, the images get loaded into memory and it uses up all the memory. Can you suggest another way by which data can be used without initially loading everything together?



import numpy as np
import os
import time
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
from keras.layers import Dense, Activation, Flatten
from keras.layers import merge, Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split



# Loading the training data
PATH = os.getcwd()
# Define data path
data_path = PATH + 'data'
data_dir_list = os.listdir(data_path)

img_data_list=
q=0;
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'n'.format(dataset))
for img in img_list:
img_path = data_path + '/'+ dataset + '/'+ img
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x = x/255
q=q+1
print(q)
print('Input image shape:', x.shape)
img_data_list.append(x)

img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)


# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')


labels[0:2388]=1
labels[2245:3786]=0


names = ['DR','NO DR']

# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#########################################################################################
# Custom_vgg_model_1
#Training the classifier alone
#image_input = Input(shape=(224, 224, 3))
#
#model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
#model.summary()
#last_layer = model.get_layer('fc2').output
##x= Flatten(name='flatten')(last_layer)
#out = Dense(num_classes, activation='softmax', name='output')(last_layer)
#custom_vgg_model = Model(image_input, out)
#custom_vgg_model.summary()
#
#for layer in custom_vgg_model.layers[:-1]:
# layer.trainable = False
#
#custom_vgg_model.layers[3].trainable
#
#custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
#
#
#t=time.time()
## t = now()
#hist = custom_vgg_model.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
#print('Training time: %s' % (t - time.time()))
#(loss, accuracy) = custom_vgg_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
#
#print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))


####################################################################################################################

#Training the feature extraction also

image_input = Input(shape=(224, 224, 3))

model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')

model.summary()

last_layer = model.get_layer('block5_pool').output
x= Flatten(name='flatten')(last_layer)
x = Dense(128, activation='relu', name='fc1')(x)
x = Dense(128, activation='relu', name='fc2')(x)
out = Dense(num_classes, activation='softmax', name='output')(x)
custom_vgg_model2 = Model(image_input, out)
custom_vgg_model2.summary()

# freeze all the layers except the dense layers
for layer in custom_vgg_model2.layers[:-3]:
layer.trainable = False

custom_vgg_model2.summary()

custom_vgg_model2.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])

t=time.time()
# t = now()
hist = custom_vgg_model2.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model2.evaluate(X_test, y_test, batch_size=10, verbose=1)

print("[INFO] loss=:.4f, accuracy: :.4f%".format(loss,accuracy * 100))

#%%
import matplotlib.pyplot as plt
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(12)

plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])








share|improve this question












share|improve this question




share|improve this question








edited Jan 6 at 5:48









Jamal♦

30.1k11114225




30.1k11114225









asked Jan 6 at 5:42









sachsom

1




1











  • Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
    – mochi
    Jan 11 at 8:51










  • yes I have started doing it.
    – sachsom
    Jan 12 at 9:49










  • You can check keras' flow_from_directory
    – mochi
    Jan 12 at 14:07
















  • Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
    – mochi
    Jan 11 at 8:51










  • yes I have started doing it.
    – sachsom
    Jan 12 at 9:49










  • You can check keras' flow_from_directory
    – mochi
    Jan 12 at 14:07















Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
– mochi
Jan 11 at 8:51




Don't load all images at once, just iteratively load the number of images you need for each batch as you need it for training. Then reduce batch size until it is a size where you can load the batch and train the model over it.
– mochi
Jan 11 at 8:51












yes I have started doing it.
– sachsom
Jan 12 at 9:49




yes I have started doing it.
– sachsom
Jan 12 at 9:49












You can check keras' flow_from_directory
– mochi
Jan 12 at 14:07




You can check keras' flow_from_directory
– mochi
Jan 12 at 14:07















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");

StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f184422%2fa-deep-learning-program-to-train-vgg-model-to-detect-if-there-is-disease-or-not%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f184422%2fa-deep-learning-program-to-train-vgg-model-to-detect-if-there-is-disease-or-not%23new-answer', 'question_page');

);

Post as a guest













































































Popular posts from this blog

Chat program with C++ and SFML

Function to Return a JSON Like Objects Using VBA Collections and Arrays

Will my employers contract hold up in court?