Rolling mean lag function for multiple variables

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty margin-bottom:0;







up vote
0
down vote

favorite












Thanks to @josliber's help (Rolling mean lag function), I was able to speed up a rolling mean function for different groups and rollmean lengths.



Now I'd like to add to this function the ability to loop through different variables and bind everything together.



Minimum reproducible example



library(zoo)
dat <- data.frame(fips = rep(c(1001, 1003), each = 100),
x = rnorm(200),
x2 = rnorm(200),
x3 = rnorm(200))


allFipsRM3 = function(dat, varName, len)
do.call(rbind, lapply(split(dat, dat$fips), function(x)
all.rm <- as.data.frame(sapply(len, function(l) c(rollmean(x[,varName], l), rep(NA, l-1))))
colnames(all.rm) <- paste0(varName, "_rm", len)
cbind(data.frame(fips=x$fips[1]), all.rm, data.frame(year=seq_len(nrow(x))-1))
))


outdat3 <- allFipsRM3(dat, "x", c(1, 2))

fips x_rm1 x_rm2 year
1001.1 1001 1.3482892 1.3043620 0
1001.2 1001 1.2604348 0.2990267 1
1001.3 1001 -0.6623813 -0.4243813 2
1001.4 1001 -0.1863812 0.2806624 3
1001.5 1001 0.7477061 -0.5111745 4
1001.6 1001 -1.7700551 -0.8463731 5






share|improve this question

























    up vote
    0
    down vote

    favorite












    Thanks to @josliber's help (Rolling mean lag function), I was able to speed up a rolling mean function for different groups and rollmean lengths.



    Now I'd like to add to this function the ability to loop through different variables and bind everything together.



    Minimum reproducible example



    library(zoo)
    dat <- data.frame(fips = rep(c(1001, 1003), each = 100),
    x = rnorm(200),
    x2 = rnorm(200),
    x3 = rnorm(200))


    allFipsRM3 = function(dat, varName, len)
    do.call(rbind, lapply(split(dat, dat$fips), function(x)
    all.rm <- as.data.frame(sapply(len, function(l) c(rollmean(x[,varName], l), rep(NA, l-1))))
    colnames(all.rm) <- paste0(varName, "_rm", len)
    cbind(data.frame(fips=x$fips[1]), all.rm, data.frame(year=seq_len(nrow(x))-1))
    ))


    outdat3 <- allFipsRM3(dat, "x", c(1, 2))

    fips x_rm1 x_rm2 year
    1001.1 1001 1.3482892 1.3043620 0
    1001.2 1001 1.2604348 0.2990267 1
    1001.3 1001 -0.6623813 -0.4243813 2
    1001.4 1001 -0.1863812 0.2806624 3
    1001.5 1001 0.7477061 -0.5111745 4
    1001.6 1001 -1.7700551 -0.8463731 5






    share|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Thanks to @josliber's help (Rolling mean lag function), I was able to speed up a rolling mean function for different groups and rollmean lengths.



      Now I'd like to add to this function the ability to loop through different variables and bind everything together.



      Minimum reproducible example



      library(zoo)
      dat <- data.frame(fips = rep(c(1001, 1003), each = 100),
      x = rnorm(200),
      x2 = rnorm(200),
      x3 = rnorm(200))


      allFipsRM3 = function(dat, varName, len)
      do.call(rbind, lapply(split(dat, dat$fips), function(x)
      all.rm <- as.data.frame(sapply(len, function(l) c(rollmean(x[,varName], l), rep(NA, l-1))))
      colnames(all.rm) <- paste0(varName, "_rm", len)
      cbind(data.frame(fips=x$fips[1]), all.rm, data.frame(year=seq_len(nrow(x))-1))
      ))


      outdat3 <- allFipsRM3(dat, "x", c(1, 2))

      fips x_rm1 x_rm2 year
      1001.1 1001 1.3482892 1.3043620 0
      1001.2 1001 1.2604348 0.2990267 1
      1001.3 1001 -0.6623813 -0.4243813 2
      1001.4 1001 -0.1863812 0.2806624 3
      1001.5 1001 0.7477061 -0.5111745 4
      1001.6 1001 -1.7700551 -0.8463731 5






      share|improve this question











      Thanks to @josliber's help (Rolling mean lag function), I was able to speed up a rolling mean function for different groups and rollmean lengths.



      Now I'd like to add to this function the ability to loop through different variables and bind everything together.



      Minimum reproducible example



      library(zoo)
      dat <- data.frame(fips = rep(c(1001, 1003), each = 100),
      x = rnorm(200),
      x2 = rnorm(200),
      x3 = rnorm(200))


      allFipsRM3 = function(dat, varName, len)
      do.call(rbind, lapply(split(dat, dat$fips), function(x)
      all.rm <- as.data.frame(sapply(len, function(l) c(rollmean(x[,varName], l), rep(NA, l-1))))
      colnames(all.rm) <- paste0(varName, "_rm", len)
      cbind(data.frame(fips=x$fips[1]), all.rm, data.frame(year=seq_len(nrow(x))-1))
      ))


      outdat3 <- allFipsRM3(dat, "x", c(1, 2))

      fips x_rm1 x_rm2 year
      1001.1 1001 1.3482892 1.3043620 0
      1001.2 1001 1.2604348 0.2990267 1
      1001.3 1001 -0.6623813 -0.4243813 2
      1001.4 1001 -0.1863812 0.2806624 3
      1001.5 1001 0.7477061 -0.5111745 4
      1001.6 1001 -1.7700551 -0.8463731 5








      share|improve this question










      share|improve this question




      share|improve this question









      asked Feb 28 at 21:20









      Amstell

      998




      998




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          Answering my own question here, but certainly open to suggestions.



          library(RcppRoll)

          # Loop through n = 10
          for (i in 1:10)

          # Create custom col labels
          lab1 <- paste0("x_", i)
          lab2 <- paste0("x2_", i)
          lab3 <- paste0("x3_", i)

          # Loop through each fips and calculate rollingmean
          dat <- dat %>%
          group_by(fips) %>%
          mutate(!!lab1 := roll_mean(x, i, align = "left", fill = "NA"),
          !!lab2 := roll_mean(x2, i, align = "left", fill = "NA"),
          !!lab3 := roll_mean(x3, i, align = "left", fill = "NA")) %>%
          ungroup()

          # Progress bar for loop
          print(i)



          > names(dat)
          [1] "fips" "x" "x2" "x3" "x_1" "x2_1" "x3_1" "x_2" "x2_2" "x3_2" "x_3" "x2_3"
          [13] "x3_3" "x_4" "x2_4" "x3_4" "x_5" "x2_5" "x3_5" "x_6" "x2_6" "x3_6" "x_7" "x2_7"
          [25] "x3_7" "x_8" "x2_8" "x3_8" "x_9" "x2_9" "x3_9" "x_10" "x2_10" "x3_10"





          share|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "196"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: false,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f188561%2frolling-mean-lag-function-for-multiple-variables%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            Answering my own question here, but certainly open to suggestions.



            library(RcppRoll)

            # Loop through n = 10
            for (i in 1:10)

            # Create custom col labels
            lab1 <- paste0("x_", i)
            lab2 <- paste0("x2_", i)
            lab3 <- paste0("x3_", i)

            # Loop through each fips and calculate rollingmean
            dat <- dat %>%
            group_by(fips) %>%
            mutate(!!lab1 := roll_mean(x, i, align = "left", fill = "NA"),
            !!lab2 := roll_mean(x2, i, align = "left", fill = "NA"),
            !!lab3 := roll_mean(x3, i, align = "left", fill = "NA")) %>%
            ungroup()

            # Progress bar for loop
            print(i)



            > names(dat)
            [1] "fips" "x" "x2" "x3" "x_1" "x2_1" "x3_1" "x_2" "x2_2" "x3_2" "x_3" "x2_3"
            [13] "x3_3" "x_4" "x2_4" "x3_4" "x_5" "x2_5" "x3_5" "x_6" "x2_6" "x3_6" "x_7" "x2_7"
            [25] "x3_7" "x_8" "x2_8" "x3_8" "x_9" "x2_9" "x3_9" "x_10" "x2_10" "x3_10"





            share|improve this answer

























              up vote
              0
              down vote













              Answering my own question here, but certainly open to suggestions.



              library(RcppRoll)

              # Loop through n = 10
              for (i in 1:10)

              # Create custom col labels
              lab1 <- paste0("x_", i)
              lab2 <- paste0("x2_", i)
              lab3 <- paste0("x3_", i)

              # Loop through each fips and calculate rollingmean
              dat <- dat %>%
              group_by(fips) %>%
              mutate(!!lab1 := roll_mean(x, i, align = "left", fill = "NA"),
              !!lab2 := roll_mean(x2, i, align = "left", fill = "NA"),
              !!lab3 := roll_mean(x3, i, align = "left", fill = "NA")) %>%
              ungroup()

              # Progress bar for loop
              print(i)



              > names(dat)
              [1] "fips" "x" "x2" "x3" "x_1" "x2_1" "x3_1" "x_2" "x2_2" "x3_2" "x_3" "x2_3"
              [13] "x3_3" "x_4" "x2_4" "x3_4" "x_5" "x2_5" "x3_5" "x_6" "x2_6" "x3_6" "x_7" "x2_7"
              [25] "x3_7" "x_8" "x2_8" "x3_8" "x_9" "x2_9" "x3_9" "x_10" "x2_10" "x3_10"





              share|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                Answering my own question here, but certainly open to suggestions.



                library(RcppRoll)

                # Loop through n = 10
                for (i in 1:10)

                # Create custom col labels
                lab1 <- paste0("x_", i)
                lab2 <- paste0("x2_", i)
                lab3 <- paste0("x3_", i)

                # Loop through each fips and calculate rollingmean
                dat <- dat %>%
                group_by(fips) %>%
                mutate(!!lab1 := roll_mean(x, i, align = "left", fill = "NA"),
                !!lab2 := roll_mean(x2, i, align = "left", fill = "NA"),
                !!lab3 := roll_mean(x3, i, align = "left", fill = "NA")) %>%
                ungroup()

                # Progress bar for loop
                print(i)



                > names(dat)
                [1] "fips" "x" "x2" "x3" "x_1" "x2_1" "x3_1" "x_2" "x2_2" "x3_2" "x_3" "x2_3"
                [13] "x3_3" "x_4" "x2_4" "x3_4" "x_5" "x2_5" "x3_5" "x_6" "x2_6" "x3_6" "x_7" "x2_7"
                [25] "x3_7" "x_8" "x2_8" "x3_8" "x_9" "x2_9" "x3_9" "x_10" "x2_10" "x3_10"





                share|improve this answer













                Answering my own question here, but certainly open to suggestions.



                library(RcppRoll)

                # Loop through n = 10
                for (i in 1:10)

                # Create custom col labels
                lab1 <- paste0("x_", i)
                lab2 <- paste0("x2_", i)
                lab3 <- paste0("x3_", i)

                # Loop through each fips and calculate rollingmean
                dat <- dat %>%
                group_by(fips) %>%
                mutate(!!lab1 := roll_mean(x, i, align = "left", fill = "NA"),
                !!lab2 := roll_mean(x2, i, align = "left", fill = "NA"),
                !!lab3 := roll_mean(x3, i, align = "left", fill = "NA")) %>%
                ungroup()

                # Progress bar for loop
                print(i)



                > names(dat)
                [1] "fips" "x" "x2" "x3" "x_1" "x2_1" "x3_1" "x_2" "x2_2" "x3_2" "x_3" "x2_3"
                [13] "x3_3" "x_4" "x2_4" "x3_4" "x_5" "x2_5" "x3_5" "x_6" "x2_6" "x3_6" "x_7" "x2_7"
                [25] "x3_7" "x_8" "x2_8" "x3_8" "x_9" "x2_9" "x3_9" "x_10" "x2_10" "x3_10"






                share|improve this answer













                share|improve this answer



                share|improve this answer











                answered Mar 2 at 6:35









                Amstell

                998




                998






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f188561%2frolling-mean-lag-function-for-multiple-variables%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Popular posts from this blog

                    Chat program with C++ and SFML

                    Function to Return a JSON Like Objects Using VBA Collections and Arrays

                    Will my employers contract hold up in court?